tìm x,y,z sao cho:
x2+y2+2z2+4x-4y-6z-2xz+9=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia nhỏ ra bạn ơi!
\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)
\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)
\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)
\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)
\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)
Vậy: \(x=1;y=-2;z=-1\)
1)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2+3x^2-6x^2\right)+\left(3x-3x+12x\right)+\left(1+1-6+19\right)=0\)
\(\Leftrightarrow12x+15=0\)
\(\Leftrightarrow x=-\frac{5}{4}\)
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
Ta có:
\(x^2+y^2+2z^2+4x-4y-6z-2xz+9=0\)
\(\Leftrightarrow\left(z^2-2z+1\right)+\left(y^2-4y+4\right)+\left(x^2+z^2+4-2xz+4x-4z\right)=0\)
\(\Leftrightarrow\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\)
Vì \(\left(z-1\right)^2\ge0\) với mọi z
\(\left(y-2\right)^2\ge0\) với mọi y
\(\left(x-z+2\right)^2\ge0\) với mọi x, z
Suy ra \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)
Hay \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\) khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}z-1=0\\y-2=0\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x=-1\end{matrix}\right.\)
Vậy \(x=-1\); \(y=2\); \(z=1\)
cảm ơn nha !!!!!!!!!!!!!!