Cho tam giác ABC có góc A=90 độ. Tia phân giác BD của góc B thuộc AC. Trên BC lấy E sao cho BA=BE. Gọi F là giao điểm của AB và DE. CM: tam giác ADF= tam giác EDC
Giải nhanh giúp mình. Mình đang cần gấp. Cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
xét \(\Delta ABD\) và \(\Delta EBD\) có
\(\hept{\begin{cases}\widehat{ABD}=\widehat{EBD}\\AB=BE\\chungBD\end{cases}}\)
=> 2 tam giác = nhau và có AD=DE(ĐPCM)
b)tí nữa có gì giải cho sau nhé, h mik phải ăn cơm rồi
bạn tự vẽ hình nha
a, Xét tam giác ABD và tam giác EBD
có:BA=BE
^ABD=^EBD
BD là canh chung
suy ra tam giác bằng nhau suy ra DA=DE
b,XÉT 2 tam gics có AD=DE ;^ADF=^EDC
^DAF=^DEC(^DAF+^DAB=180 đọ
suy ra tam giác bằng nhau
c,tam giác ADF=EDC
DF=DC
tam giác DFC cân
ta có ÀF + AB =BF
BE + EC = BC
Mà BÉ=AB
ÀF=EC
suy ra BF=BC
tam giác BFC cân tại B
nhớ tích đùng cho mình nha
a: Xét ΔABD và ΔEBD có
BA=BE
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
Ta có: ΔABD=ΔEBD
nên
hay DE⊥BC