Chứng minh tích 8 số nguyên dương liên tiếp không phải số chính phương . nhờ các bạn và anh chị giúp em ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.
Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\)
\(\Rightarrow7\left(a+b\right)=m^2+n^2\)
\(\Rightarrow m^2+n^2⋮7\)
\(\Rightarrow m;n\) đều chia hết cho 7
\(\Rightarrow m^2;n^2\) đều chia hết cho 49
\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)
Cám ơn thầy ạ !
Đây là 1 loạt những bài toán về chuyên đề đồng dư thức , thầy đã nhiệt tình giúp đỡ em, em cám ơn ạ
Đặt \(N=n^4+4n^3+7n^2+6n+3=\left(n^2+n+1\right)\left(n^2+3n+3\right)\)
Do \(n\) và \(n+1\) luôn khác tính chẵn lẻ \(\Rightarrow n^2\) và \(n+1\) khác tính chẵn lẻ
\(\Rightarrow n^2+n+1\) luôn lẻ
Gọi \(d=ƯC\left(n^2+n+1;n^2+3n+3\right)\) \(\Rightarrow d\) lẻ
\(\Rightarrow n^2+3n+3-\left(n^2+n+1\right)⋮d\)
\(\Rightarrow2\left(n+1\right)⋮d\)
\(\Rightarrow n+1⋮d\)
\(\Rightarrow\left(n+1\right)^2⋮d\Rightarrow\left(n+1\right)^2-\left(n^2+n+1\right)⋮d\)
\(\Rightarrow n⋮d\Rightarrow n+1-n⋮d\Rightarrow d=1\)
\(\Rightarrow n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau
Giả sử tồn tại m nguyên dương thỏa mãn: \(\left(n^2+n+1\right)\left(n^2+3n+3\right)=m^3\)
Hiển nhiên \(m>1\), do \(n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau, đồng thời \(n^2+3n+3>n^2+n+1\)
\(\Rightarrow\left\{{}\begin{matrix}n^2+n+1=1\\n^2+3n+3=m^3\end{matrix}\right.\)
Từ \(n^2+n+1=1\Rightarrow\left[{}\begin{matrix}n=-1\\n=0\end{matrix}\right.\) đều ko thỏa mãn n nguyên dương
Vậy N luôn luôn ko là lập phương
Với n= 3 , ,chọn x3 =y3 =1
Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp
\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),
\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)
Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\))
\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)
Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP
\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP
\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)
Ta có:
\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)
\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)
\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)
Thay lại kiểm tra thấy đều thỏa mãn