K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

 

12 tháng 7 2018

Ai giỏi giúp mik vs nha mik cần rất gấp

25 tháng 6 2021

a) Ta có: \(\angle AMH=\angle AEH=90\Rightarrow AEMH\) nội tiếp

\(\Rightarrow\angle AME=\angle AHE\)

Ta có: \(\angle HEC+\angle HDC=90+90=180\Rightarrow HECD\) nội tiếp

\(\Rightarrow\angle AHE=\angle ACD\Rightarrow\angle AME=\angle ACD\Rightarrow MECI\) nội tiếp

\(\Rightarrow\angle AME=\angle ACI\)

Xét \(\Delta AME\) và \(\Delta ACI:\) Ta có: \(\left\{{}\begin{matrix}\angle AME=\angle ACI\\\angle CAIchung\end{matrix}\right.\)

\(\Rightarrow\Delta AME\sim\Delta ACI\left(g-g\right)\Rightarrow\dfrac{AM}{AC}=\dfrac{AE}{AI}\Rightarrow AE.AC=AM.AI\)

b) Gọi T là trung điểm AH

Dễ dàng chứng minh được T là tâm (AEMH)

 \(\Rightarrow\Delta TEH\) cân tại T \(\Rightarrow\angle TEH=\angle THE=\angle ACB\) ​(HECD nội tiếp)

\(\Delta EBC\) ​vuông tại E có I là trung điểm BC cân tại I

 \(\Rightarrow\Delta EBI\) cân tại I \(\Rightarrow\angle BEI=\angle EBI\)

mà \(\angle EBI+\angle ACB=90\Rightarrow\angle BEI+\angle TEH=90\Rightarrow\angle TEI=90\)

\(\Rightarrow IE\) là tiếp tuyến của (AEMH) 

\(\Rightarrow\angle IAE=\angle IEM=\angle ICM\) (EMIC nội tiếp)

mà \(\angle IAE=\angle NBC\) (NBAC nội tiếp) \(\Rightarrow\angle ICM=\angle NBC\)

\(\Rightarrow CM\parallel BN\)

Tương tự \(\Rightarrow BM\parallel CN\) \(\Rightarrow BMCN\) là hình bình hành

mà I là trung điểm BC \(\Rightarrow I\) là trung điểm MN

undefined

 

  

 

 

25 tháng 6 2021

mỏi tay quá bạn :>

a, Gọi I là trung điểm của BC 

Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC 

Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC

Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB 

b,  Ta có :

\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )

= > BH // CK ( cùng vuông góc với AC )

Tương tự ta cũng có CH // BK 

= > BHCK là hình bình hành

= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC 

= > H,I,K thẳng hàng ( đpcm )

c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :

\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)

( Do góc HBD và HAF cùng phụ với góc C )

Lại có :

Tam giác EIC cân tại I nên :

\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)

\(=>\widehat{EIC}=\widehat{DFE}\)

= > Tứ giác DFEI là tứ giác nội tiếp 

= > D,F,E,I cùng thuộc 1 đường tròn