K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

giúp mik với ạ 

ai nhanh mik k cho

6 tháng 12 2019

Ta có : \(\hept{\begin{cases}ƯCLN\left(a,b\right)=15\\BCNN\left(a,b\right)=90\end{cases}}\)

\(\Rightarrow\)ab=ƯCLN(a,b).BCNN(a,b)=15.90=1350

Vì ƯCLN(a,b)=15 nên \(\hept{\begin{cases}a⋮15\\b⋮15\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a=15m\\b=15n\\ƯCLN\left(m,n\right)=1\end{cases}}\)

Ta có : a+15=b

\(\Rightarrow\)b-a=15  (a<b)

Mà ab=1350

\(\Rightarrow\)15m.15n=1350

\(\Rightarrow\)225m.n=1350

\(\Rightarrow\)mn=6

Vì a<b ; b-a=15 và ƯCLN(m,n)=1 nên ta có bảng sau :

m          2

n          3

a        30

b       45

Vậy a=30 và b=45.

10 tháng 12 2017

a) Vì ƯCLN ( a , b ) = 27

=> a = 27x , b = 27y , ( x , y ) = 1

Mà a + b = 162 

Thay a = 27x , b = 27y vào a + b = 162 ta được

  27x + 27 y = 162

  27 . ( x + y ) = 162

           x + y  = 162 : 6

Ta có : 6 = x + y = 1 + 5 = 5 + 1 = 2 + 4 = 4 + 2 = 3 + 3 

Mà ( x , y ) = 1 => ( x , y ) = ( 1,5 ) ; ( 5,1 ) ; ( 3 ; 3 ) 

+ Nếu x = 5 , y = 1 => a = 135,b=27

+ Nếu x = 1 , y = 5 => a = 27 , b = 135

+ Nếu x = 3 , y = 3 => a = 81 , b = 81

Vậy ( a , b ) = ( 135 , 27 ) ; ( 27,135 ) ; ( 81 , 81 )

11 tháng 12 2017

Ai giúp mình làm câu c) với !!!!

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt

15 tháng 11 2018
Dễ lắm, lên chị google mà hỏi =))
16 tháng 12 2023

Theo bài ra ta có: a = 15.k; b = 15.d  (k;d) = 1 

⇒ a.b = 15.k.15.d ⇒a.b = 300.15

⇒ 15.k.15.d = 300.15 ⇒ k.d = 300.15:15:15 ⇒ k.d = 20

Mặt khác ta cũng có: 15.k + 15 = 15.d

                                15.(k + 1)  = 15d 

                                      k + 1    =  d ⇒ k = d - 1

Thay k = d - 1 vào k.d = 20 ta có: (d-1).d = 20 ⇒ (d-1).d = 4.5 ⇒ d = 5

           k = 5 - 1 = 4

Vậy a = 15.4 = 60; b = 60 + 15 = 75

Kết luận vậy (a;b)  =(60; 75)

 

 

 

 

9 tháng 11 2024

Ta có : 

a.b = 300. 15 = 4500 ( a ≥ b )

a = 15.m ; b = 15. n và UCLN(m,n) = 1 (m ≥ n)

Lại có :

a . b = 4500

15 .m . 15. n = 4500

225 . (m . n) = 4500

m.n = 20

Ta có bảng sau :

m |   5    |     20                             Thử lại : a + 15 = b                             a + 15 = b

n  |   4    |     1                                             60 + 15 = 75 ( chọn )            15 + 15 = 300 ( loại )

a  |   75  |      300                         Vậy (a,b ) = ( 75 ; 60 )

b  |    60 |       15

 

18 tháng 1

k.ngọc oi, 30 chứ ko phải 300 nhé


15 tháng 3 2023

Do ƯCLN(a; b) = 15

\(\Rightarrow a=15k\left(k\in Z\right);b=15m\left(m\in Z\right)\)

\(a+15=b\Rightarrow15k+15=15m\)

\(\Rightarrow k+1=m\)

*) k = 1 \(\Rightarrow m=2\)

\(\Rightarrow a=15;b=30\Rightarrow BCNN\left(a;b\right)=30\) (loại)

*) \(k=2\Rightarrow m=3\Rightarrow a=30;b=45\Rightarrow BCNN\left(a;b\right)=90\) (loại)

*) \(k=3\Rightarrow m=4\Rightarrow a=45;b=60\Rightarrow BCNN\left(a;b\right)=180\) (loại)

*) \(k=4\Rightarrow m=5\Rightarrow a=60;b=75\Rightarrow BCNN\left(a;b\right)=300\) (nhận)

Vậy a = 60; b = 75

DD
29 tháng 7 2021

Giả sử \(a\ge b\).

\(\left(a,b\right)=15\Rightarrow a=15m,b=15n\)với \(\left(m,n\right)=1;m\ge n\).

\(ab=\left[a,b\right].\left(a,b\right)=2100.15=31500\)

\(ab=15m.15n=225mn=31500\Rightarrow mn=140=2^2.5.7\).

mà \(\left(m,n\right)=1;m\ge n\)nên ta có bảng giá trị: 

m202835140
n7541
a3004205252100
b105756015