Cho a,b > 0
CMR : a+b lớn hơn hoặc bằng \(\frac{4ab}{1+ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có \(\left(a-b\right)^2\ge0\)
Nên \(a^2-2ab+b^2\ge0\)
\(\left(a-b\right)-ab\ge0\)
\(\left(a+b\right)^2\ge4ab\)
\(\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) luôn đúng đẳng thức khi a=b
mọi biến đổi là tương đương => dpcm
\(S=\frac{\sqrt{a-2}}{a}+\frac{\sqrt{b-6}}{b}+\frac{\sqrt{c-12}}{c}=\frac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\frac{\sqrt{6\left(b-6\right)}}{\sqrt{6}b}+\frac{\sqrt{12\left(c-12\right)}}{\sqrt{12}c}\)
\(\le\frac{\frac{2+a-2}{2}}{\sqrt{2}a}+\frac{\frac{6+b-6}{2}}{\sqrt{6}b}+\frac{\frac{12+c-12}{2}}{\sqrt{12}c}=\frac{a}{2\sqrt{2}a}+\frac{b}{2\sqrt{6}b}+\frac{c}{2\sqrt{12c}}\)(AM-GM)
\(=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{6}}+\frac{1}{2\sqrt{12}}\)
Dấu "=" xảy ra \(\Leftrightarrow a=4;b=12;c=24\)
Áp dụng BĐT Cauchy : \(\frac{\sqrt{\left(a-1\right).1}}{a}+\frac{\sqrt{\left(b-2\right).2}}{\sqrt{2}b}\le\frac{a-1+1}{2a}+\frac{b-2+2}{2\sqrt{2}b}=\frac{1}{2}+\frac{1}{2\sqrt{2}}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a-1=1\\b-2=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)
Vậy max A = \(\frac{1}{2}+\frac{1}{2\sqrt{2}}\Leftrightarrow\left(a;b\right)=\left(2;4\right)\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)
\(\Leftrightarrow\frac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)\left(1+b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(a+ab^2-b-a^2b\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\forall ab\ge1\)
Ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
<=>\(a+b\ge2\sqrt{ab}\)
Dấu ''='' xảy ra <=>\(\sqrt{a}-\sqrt{b}=0<=>\sqrt{a}=\sqrt{b}<=>a=b\)
Tick cho tui nha,bạn hiền
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(\frac{4ab}{1+ab}\le\frac{4ab}{2\sqrt{ab}}=2\sqrt{ab}\le a+b\)
Dấu "=" xảy ra khi a=b=1