K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Ta có \(\left(a-b\right)^2\ge0\)

Nên \(a^2-2ab+b^2\ge0\)

\(\left(a-b\right)-ab\ge0\)

\(\left(a+b\right)^2\ge4ab\)

28 tháng 2 2018

\(\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) luôn đúng đẳng thức khi a=b

mọi biến đổi là tương đương => dpcm

1 tháng 8 2018

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

1 tháng 8 2018

\(\left(a+b\right)^2\ge4ab\)

<=>  \(a^2+2ab+b^2\ge4ab\)

<=>  \(a^2+2ab+b^2-4ab\ge0\)

<=>  \(a^2-2ab+b^2\ge0\)

<=>  \(\left(a-b\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra <=> a=b

13 tháng 5 2021

Bài này `a=b=2=>ab=a+b` nhé.=>Phải là `ab>=a+b`

`ab>=a+b`

`<=>2ab>=2a+2b`

`<=>ab-2a+ab-2b>=0`

`<=>a(b-2)+b(a-2)>=0`

Mà `a>=2,b>=2`

`=>đpcm`

1 tháng 5 2017

Ta co \(a^4+b^4+2\ge2a^2b^2+2\)\(=2\left(a^2b^2+1\right)\ge2\cdot2ab\)\(=4ab\)

Dau "=" xay ra khi va chi khi a=b

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

31 tháng 5 2018

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)

4 tháng 9 2017

ta áp dụng cô-si la ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

4 tháng 9 2017

Bạn cm hộ mình cô si la dc k mình chưa học đến

22 tháng 6 2017

\(VT=A^2-AB+B^2\)

\(=A^2-AB+\frac{B^2}{4}+\frac{3B^2}{4}\)

\(=\left(A-\frac{B}{2}\right)^2+\frac{3B^2}{4}\ge0\)

22 tháng 6 2017

=\(a^2-2.\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3b^2}{4}=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\)