Tìm STN n biết 2^n +3^n là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì n tn nên ta xet cac TH
+, n=1 ta có 1!=1la scp( chọn)
+,n=2 ta có1!+ 2!=3ko là scp(loại)
+,n=3 ta có1!+2! 3!=9 là scp( chọn)
+,n=4 ta có 1!+2!+3!+4!=33ko là scp( loai)
+, n>=5 ta có1!+2!+3!+4!+5!+...+n!
mà n>=5 nên 5!,6!,7!,...,n! có tc là 0
1!+2!+3!+4! có tận cùg là 3
nên 1!+2!+3!+...+n! có tc là 3
mà 1scp ko có tc là 3
=> n>=5 ko tm
vậy n=1.3
Đặt \(2^4+2^7+2^n=a^2\left(a\in N\right)\)
\(\Leftrightarrow\left(2^4+2^7\right)+2^n=a^2\)
\(\Leftrightarrow2^4.\left(1+2^3\right)+2^n=a^2\)
\(\Leftrightarrow2^4.3^2+2^n=a^2\)
\(\Leftrightarrow\left(2^2.3\right)^2+2^n=a^2\)
\(\Leftrightarrow12^2+2^n=a^2\)
\(\Leftrightarrow2^n=a^2-12^2\)
\(\Leftrightarrow2^n=\left(a-12\right).\left(a+12\right)\)
Đặt \(a-12=2^q\) ( * ) ; \(a+12=2^p\) ( ** )
Giả sử p > q ; p , q \(\in\) N
Lấy ( ** ) - ( * ) vế với vế ta được : \(24=2^p-2^q\)
\(2^3.3=2^q.\left(2^{p-q}-1\right)\)
\(\Rightarrow\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\Rightarrow\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\Rightarrow\hept{\begin{cases}q=3\\p-q=2\end{cases}}\) \(\hept{\begin{cases}q=3\\p=5\end{cases}}\)
\(\Rightarrow n=p+q=3+5=8\)
Với \(n=8\) thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn yêu cầu bài toán
Vậy \(n=8\)
1)Gọi số tự nhiên cần tìm có dạng ab
Ta có: ab*45=ab2
nên ab=45
Vậy số cần tìm là 45
2)a.Ta có: n và 2n có tổng các chữ số bằng nhau
nên n chia 9 dư p
nên 2n chia 9 dư p
nên 2n-n chia hết cho 9 hay n chia hết cho 9
hờ hờ, các câu còn lại lười lm
Vì n là số tự nhiên có 2 chữ số thì 10≤n≤9910≤n≤99
=>21≤2n+1≤19921≤2n+1≤199
Vì 2n+1 là số chính phương
=>2n+1=(16;25;36;499;64;81;100;121;169)
n=(12;24;40;60;84)
=>3n+1=(37;73;121;181;253)
Mà 3n+1 là số chính phương
=>3n+1=121
=>n=40