Cho x2 - 52x+2=0 và x khác 0. Tính giá trị của biểu thức P= x4+4/27x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
\(x^2-9x+1=0\)
\(\Rightarrow\Delta=\left(-9\right)^2-4\cdot1\cdot1=77>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{77}}{2}\\x_2=\dfrac{9-\sqrt{77}}{2}\end{matrix}\right.\)
Ta có:
\(V=x^4+x^2+\dfrac{1}{5}x^2=x^4+\dfrac{6}{5}x^2\)
Thay \(x_1,x_2\) vào V ta có:
\(V_1=\left(\dfrac{9+\sqrt{77}}{2}\right)^4+\dfrac{6}{5}\left(\dfrac{9+\sqrt{77}}{2}\right)^2\approx6333\)
\(V_2=\left(\dfrac{9-\sqrt{77}}{2}\right)^4+\dfrac{6}{5}\left(\dfrac{9-\sqrt{77}}{2}\right)^2\approx0,015\)
Ta có: P = x 2 + 2 x + 5 2 x + 1 = x + 1 2 + 4 2 x + 1 = x + 1 2 + 2 x + 1
Vì x ≥ 0 ⇒ x + 1 > 0 ⇒ x + 1 2 > 0 ; 2 x + 1 > 0
Áp dụng bất đẳng thức cô – si cho 2 số dương
x + 1 2 ; 2 x + 1 : x + 1 2 + 2 x + 1 ≥ 2 . x + 1 2 . 2 x + 1 = 2
Vậy giá trị nhỏ nhất của P là 2 khi x = 1.
Biến đổi: 4 x 2 − 4 xy + y 2 = 0 ⇔ ( 2 x − y ) 2 = 0 ⇔ 2 x = y
Thay y = 2x vào P ta được P = -3
Ta có
x^2-52x+2=0
=> x^2+2=52 x
=> (x^2+2)^2=(52x)^2
=> x^4+4x^2+4=2704 x^2
=> x^4+4 =2700 x ^2
=> P=2700x^2/ 27x^2=100