K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)

Có: \(\hept{\begin{cases}a^2-b^2>0\\2a-b^2>0\\a;b>0\end{cases}\Leftrightarrow a>b>0.}\)

 \(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)(1)

<=> \(\sqrt{2ab-b^2}>a-\sqrt{a^2-b^2}\)

<=> \(2ab-b^2>a^2-2a\sqrt{a^2-b^2}+a^2-b^2\)

<=> \(b>a-\sqrt{a^2-b^2}\)

<=> \(a-b-\sqrt{a^2-b^2}< 0\)

<=> \(\sqrt{a-b}\left(\sqrt{a-b}-\sqrt{a+b}\right)< 0\)đúng vì \(\sqrt{a-b}-\sqrt{a+b}< 0\)

=>  (1) đúng.

4 tháng 12 2019

Chia hai vế cho a, bất đẳng thức cần chứng minh được viết lại thành:

\(\sqrt{1-\left(\frac{b}{a}\right)^2}+\sqrt{2\left(\frac{b}{a}\right)-\left(\frac{b}{a}\right)^2}>1\)

Đặt \(\frac{b}{a}=x\Rightarrow0< x< 1\). Ta cần chứng minh:

\(\sqrt{1-x^2}+\sqrt{2x-x^2}>1\)

\(\Leftrightarrow2x-2x^2+2\sqrt{\left(1-x^2\right)\left(2x-x^2\right)}>0\) (bình phương 2 vế)

\(\Leftrightarrow2x\left(1-x\right)+2\sqrt{x\left(1-x\right)\left(1+x\right)\left(2-x\right)}>0\) (đúng)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của nguyễn minh - Toán lớp 9 | Học trực tuyến

15 tháng 6 2017

\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)

\(\Leftrightarrow2ab-2b^2+2\sqrt{a^2-b^2}.\sqrt{2ab-b^2}>0\)

Cái nãy đúng vì \(0< b< a\)

Vậy có ĐPCM

16 tháng 6 2017

Chứng minh nhanh gọn lẹ

24 tháng 12 2018

\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\frac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)

                                                   \(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)

                                                   \(=a-\sqrt{ab}+b-\sqrt{ab}\)

                                                    \(=\left(\sqrt{a}-\sqrt{b}\right)^2\)

Asp dụng bđt AM-GM ta có

\(\frac{\left(\frac{b+c}{a}+1\right)}{2}\ge\sqrt{\frac{b+c}{a}.1}\)

\(\Leftrightarrow\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\) hay  \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)

Tương tự

\(\sqrt{\frac{b}{b+c}}\ge\frac{2b}{a+b+c}\)(2)

\(\sqrt{\frac{c}{c+a}}\ge\frac{2c}{a+b+c}\)(3)

Từ (1),(2),(3)  ta có

\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{\frac{a}{a+b}}=1\\\sqrt{\frac{b}{b+c}}=1\\\sqrt{\frac{c}{c+a}}=1\end{cases}}\)(vô lí ) 

Vậy dấu "=" không xảy ra 

do đó \(VT>2\)

18 tháng 8 2019

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★      bạn viết sai rồi kia. xem đề coi có sai ko đã

30 tháng 4 2020

Áp dụng BĐT AM-GM ta có a+b+c\(\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự ta có:\(\hept{\begin{cases}\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\\\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\end{cases}}\)

=> \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra <=>\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Leftrightarrow a=b=c=0}\)(trái với giả thiết)

Vậy dấu "=" không xảy ra => đpcm

30 tháng 4 2020

Áp dụng BĐT Cô-si,ta có :

\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{b+c+a}{2a}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng từng vế theo vế, ta được :

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}\Rightarrow a+b+c=0}\)( trái với giả thiết vì a,b,c > 0 )

Nên dấu "=" không xảy ra

Vậy ...

10 tháng 9 2018

Ta có: \(\sqrt{\frac{b+c}{a}}\le\frac{1+\frac{b+c}{a}}{2}=\frac{a+b+c}{2a}\) 

     \(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)  

Tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) 

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\) 

Dấu "=" xảy ra khi a=b=c=0 (trái gt) 

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)(đpcm)