K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

\(\dfrac{2\sqrt{15}-2\sqrt{10}-3+\sqrt{6}}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)

\(=\dfrac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}=-\sqrt{3}-\sqrt{6}+\sqrt{2}+2\)

\(2\sqrt{40\sqrt{3}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\cdot\sqrt{40\sqrt{3}}-2\cdot\sqrt{5\sqrt{3}}-3\cdot\sqrt{20\sqrt{3}}\)

\(=2\cdot2\sqrt{10}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-6\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

\(=4\sqrt{10}\sqrt{\sqrt{3}}-4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

28 tháng 6 2021

Bạn chia nhỏ ra để nhận được câu tl sớm nhất nhé!Bạn đặt câu hỏi free mà để dày cộp như này khum ai dám làm =(((

21 tháng 6 2017

a, Dễ thấy C>0.

Ta có: \(C^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

=>\(C=\sqrt{\left(\sqrt{5}+1\right)^2}=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)(vì C>0).

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)

 

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Câu 1,2 bạn đã đăng và có lời giải rồi

Câu 3:

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)

10 tháng 7 2023

\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\cdot\sqrt{6}-\sqrt{6}}{\sqrt{6}-1}+\dfrac{\sqrt{6}\cdot\sqrt{6}-\sqrt{6}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}}{1}+\dfrac{\sqrt{6}-1}{1}\)

\(=\sqrt{6}+\sqrt{6}-1\)

\(=2\sqrt{6}-1\)

=======================

\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\cdot\sqrt{3}+\sqrt{6}\cdot\sqrt{2}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)-3\left(\sqrt{2}-\sqrt{3}\right)}{-\sqrt{6}}\)

\(=\dfrac{2\sqrt{3}+3\sqrt{2}-3\sqrt{2}+3\sqrt{3}}{-\sqrt{6}}\)

\(=\dfrac{5\sqrt{3}}{-\sqrt{6}}=-\dfrac{5}{\sqrt{2}}\)