K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Diện tích ΔABC là

\(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot8}{2}=24cm\)

b) Xét ΔABC có

M là trung điểm của BC(gt)

N là trung điểm của AB(gt)

Do đó: MN là đường trung bình của ΔABC(định nghĩa đường trung bình của tam giác)

⇒MN//AC và \(MN=\frac{AC}{2}\)(định lí 2 về đường trung bình của tam giác)

mà AB⊥AC(do ΔABC vuông tại A)

nên MN⊥AB(định lí 2 về quan hệ giữa vuông góc và song song)

c)Đề bài phải là D đối xứng với M qua AB mới đúng

Nếu vậy mới làm được câu c này à

Ta có: D và M đối xứng nhau qua AB(gt)

⇒AB là đường trung trực của DM

⇒AB cắt DM tại trung điểm của DM và AB⊥DM

\(AB\cap DM=\left\{N\right\}\)

nên N là trung điểm của DM và AN⊥DM

Xét tứ giác ADBM có

N là trung điểm của đường chéo AB(gt)

N là trung điểm của đường chéo DM(cmt)

Do đó: ADBM là hình bình hành(dấu hiệu nhận biết hình bình hành)

Xét ΔADM có

AN là đường cao ứng với cạnh DM(do AN⊥DM)

AN là đường trung tuyến ứng với cạnh DM(do N là trung điểm của DM)

Do đó: ΔADM cân tại A(định lí tam giác cân)

⇒AD=AM

Xét hình bình hành ADBM có AD=AM(cmt)

nên ADBM là hình thoi(dấu hiệu nhận biết hình thoi)

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

16 tháng 12 2021

b: Xét ΔABC có

M là trung điểm của BC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC

hay MN⊥AB

11 tháng 2 2019

A B C M P

a) Diện tích của tam giác ABC là:

\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)

b) Ta có: N là trung điểm của AB

              M là trung điểm của BC

=> MN là đường trung bình của tam giác ABC

\(\Rightarrow MN//AC\)

Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)

Suy ra: \(MN\perp AB\)

c) Trong tứ giác AMBP:

Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)

=> Tứ giác AMBP là hình bình hành

Mà \(MN\perp AB\)  (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)

=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến ứng với cạnh huyền BC

nên \(AP=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

b: Xét ΔABC có

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMPN có 

PN//AM

PN=AM

Do đó: AMPN là hình bình hành

mà \(\widehat{NAM}=90^0\)

nên AMPN là hình chữ nhật

c: Xét tứ giác APCE có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo PE

Do đó: APCE là hình bình hành

mà PE\(\perp\)AC

nên APCE là hình thoi