Cho tam giác ABC vuông tại A.Trên tia đối của tia AC lấy điểm D sao cho AC=AD.Trên tia đối của tia BA lấy điểm M bất kì.C/m rằng
a)BA là tia phân giác của góc CBD
b)Tam giác MBC =tam giác MBD
Giải giúp mình nha các bạn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình, giả thiết, kết luận tự vẽ, viết đi
Xét △ABC vuông tại A và △ABD vuông tại A
Có: AC = AD (gt)
AB là cạnh chung
=> △ABC = △ABD (cgv)
=> ABC = ABD (2 góc tương ứng)
Và BA nằm giữa CBD
=> BA là phân giác của CBD
b, Vì △ABC = △ABD (cmt)
=> BC = BD (2 cạnh tương ứng)
Ta có: CBA + CBM = 180o (2 góc kề bù)
DBA + DBM = 180o (2 góc kề bù)
Mà ABC = ABD (cmt)
=> CBM = DBM
Xét △CBM và △DBM
Có: BC = BD (cmt)
CBM = DBM (cmt)
BM là cạnh chung
=> △CBM = △DBM (c.g.c)
A) XÉT \(\Delta BDA\)VÀ\(\Delta BCA\)CÓ
\(DA=CA\left(GT\right)\)
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AB LÀ CẠNH CHUNG
\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)
=>\(\widehat{B_1}=\widehat{B_2}\)
=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)
B)
TA CÓ
\(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)
\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)
MÀ \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)
XÉT \(\Delta MBD\)VÀ\(\Delta MBC\)CÓ
MB LÀ CẠNH CHUNG
\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)
\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)
=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)
GT:cho tam giác vuông ABC ( A vuông)
AC=AD ; DAC thẳng hàng;D khác C
KL: BA là tia phân giác của góc ABD
tam giác MBC=MBD
a), xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh cung
nên tam giác ABC = tam giác ADC (c-g-c)
mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà ba nằm giữa
=> ba là tia phân giác của góc CBD
b), xét tam giác MBCvàMBD có
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
a) Xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh chung
=> tam giác ABC = tam giác ADC (c-g-c)
Mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà BA nằm giữa
=> BA là tia phân giác của góc CBD
b), xét tam giác MBC và MBD ,có :
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
a) Xét hai tam giác ABC và ABD có :
AC = AD (gt)
góc DAB = góc CAB (= 90o)
AB chung
=> tam giác ABC = ABD (c.g.c) => góc DBA = góc ABC
=> BA là tia phân giác của góc CBD
b) Từ câu a) => DB = BC và góc DBA = góc ABC
Xét hai tam giác MBD và MBC có :
DB = BC (cmt)
góc DBM = góc CBM (vì kề bù với 2 góc bằng nhau)
BM chung
=> tam giác MBD = tam giác MBC (c.g.c)
a/ Xét tam giác ABD và tam giác ABC có:
Góc BAD=BAC=90 độ
AB chung
DA=CA(gt)
=> Tam giác ABD=ABC(c-g-c)
=> Góc DBA-CBA(góc tương ứng)
Vậy BA là tia phân giác góc CBD
b/ Ta có: Góc MBD+ABD=180 độ
Góc MBC+ABC=180 độ
Mà Góc ABD=ABC => Góc MBD=MBC
Xét tam giác MBD và tam giác MBC có:
MB chung
Góc MBD=MBC(cmt)
BD=BC(cạnh tương ứng của tam giác ABC=ABD)
=> Tam giác MBD=tam giácMBC(c-g-c)
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
Suy ra: \(\widehat{ABC}=\widehat{ABD}\)
a/ Có: \(\widehat{DAB}+\widehat{BAC}=180^0\)
=> \(\widehat{DAB}=180^0-\widehat{BAC}=180^0-90^0=90^0\)
=> \(\widehat{DAB}=\widehat{BAC}\)
Xét ΔABD và ΔABC ta có:
AD = AC (GT)
\(\widehat{DAB}=\widehat{BAC}\) (cmt)
AB: cạnh chung
Do đó: ΔABD = ΔABC (c - g - c)
=> \(\widehat{DBA}=\widehat{CBA}\) (2 góc tương ứng)
=> BA là tia phân giác của góc CBD