Chữ số hàng đơn vị trong hệ thập phân của số M = \(a^2+ab+b^2\) là 0 (a, b ∈ N* ). CMR M chia hết cho 20.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
14 tháng 11 2018
100(2) = 1.22 + 0.2 + 0 = 4
111(2) = 1.22 + 1.2 + 1 = 4 + 2 + 1 = 7
1010(2) = 1.23 + 0.22 + 1.2 + 0 = 8 + 0 + 2 + 0 = 10
1011(2) = 1.23 + 0.22 + 1.2 + 1 = 8 + 2 + 1 = 11
CM
22 tháng 6 2018
5 = 1.22 + 0.2 + 1 = 101(2).
6 = 1.22 + 1.2 + 0 = 110(2).
9 = 1.23 + 0.22 + 0.2 + 1 = 1001(2).
12 = 1.23 + 1.22 + 0.2 + 0 = 1100(2).
ta có chữ số tận cùng của M là 0 nên M là số chẵn và M chia hết cho 10 (1)
TH1: nếu a và b đều lẻ => a^2 lẻ, b^2 lẻ, ab lẻ => M lẻ (loại)
TH2: nếu a chẵn (lẻ) và b lẻ (chẵn) => M lẻ (loại)
TH3: nếu cả a và b đều chẵn => M chẵn (nhận)
=> a^2 chia hết cho 4, b^2 chia hết cho 4, ab chia hết cho 4 (2)
từ (1) và (2) ta có: M chia hết cho 20