1-3+32-...+(-3x )=\(\frac{9^{1006}-1}{4}\)
tìn x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
Vì \(\frac{9^{1006}-1}{4}\) là số chẵn nên x là số lẻ
\(\Rightarrow\left(-3\right)^x=-3^x\)
Đặt A=1-3+32-33+...-3x
3A=3-32+33-34+...+3x+1
3A+A=[3-32+33-34+...+3x+1] -[1-3+32-33+...-3x]
4A=3x+1-1
\(A=\frac{3^{x+1}-1}{4}=\frac{9^{1006}-1}{4}=\frac{\left(3^2\right)^{1006}-1}{4}=\frac{3^{1012}-1}{4}\)
=>x+1=2012
=>x=2012-1=2011
vậy x=2011
Vì \(\frac{9^{1006}-1}{4}\) là số chẵn nên x là số lẻ => (-3)x = -3x
Đặt A = 1 - 3 + 32 - 33 + ... - 3x
3A = 3 - 32 + 33 - 34 + ... + 3x+1
3A + A = [3 - 32 + 33 - 34 + ... + 3x+1] - [1 - 3 + 32 - 33 + ... - 3x]
4A = 3x+1 - 1
\(A=\frac{3^{x+1}-1}{4}=\frac{9^{1006}-1}{4}=\frac{\left(3^2\right)^{1006}-1}{4}=\frac{3^{2012}-1}{4}\)
=> x + 1 = 2012
=> x = 2012 - 1 = 2011
Vậy x = 2011
Sửa lại tí: + (-3x) là + 3x vì + số lớn như vậy mà \(\frac{9^{1006}-1}{4}\)> 0 nên sửa như vậy và \(\frac{9^{1006}-1}{4}\)đổi thành \(\frac{9^{1006}+1}{4}\)
Cái đó lát nữa biết.
Bg
Ta có: 1 - 3 + 32 - 33 +...+ 3x = \(\frac{9^{1006}+1}{4}\)
Đặt B = 1 - 3 + 32 - 33 +...+ 3x:
=> B = 1 - 3 + 32 - 33 +...+ 3x
=> 3B = 3 - 32 + 33 - 34 +...+ 3x + 1
=> 3B + B = 3 - 32 + 33 - 34 +...+ 3x + 1 + (1 - 3 + 32 - 33 +...+ 3x)
=> 4B = 3 - 32 + 33 - 34 +...+ 3x + 1 + 1 - 3 + 32 - 33 +...+ 3x
=> 4B = (3 - 3) + (32 - 32) + (33 - 33) +...+ (3x - 3x) + 3x + 1 + 1
=> 4B = 3x + 1 + 1
=> B = \(\frac{3^{x+1}+1}{4}\)
=> \(\frac{3^{x+1}+1}{4}=\frac{9^{1006}+1}{4}\)
=> 3x + 1 + 1 = 91006 + 1
=> 3x + 1 = 91006
=> 3x + 1 = 91006
=> 3x + 1 = (32)1006
=> 3x + 1 = 32.1006
=> 3x + 1 = 32012
=> x + 1 = 2012
=> x = 2012 - 1
=> x = 2011
a) \(x-2=-6\)
\(x=-6+2\)
\(x=-4\)
b) \(15-\left(x-7\right)=-21\)
\(x-7=36\)
\(x=43\)
c) \(4.\left(3x-4\right)-2=18\)
\(4\left(3x-4\right)=20\)
\(3x-4=5\)
\(3x=9\)
\(x=3\)
d) \(\left(3x-6\right)+3=32\)
\(3x-6=29\)
\(3x=29+6\)
\(3x=35\)
\(x=\frac{35}{3}\)
e) \(\left(3x-6\right).3=32\)
\(3x-6=\frac{32}{3}\)
\(3x=\frac{32}{3}+6\)
\(3x=\frac{50}{3}\)
\(x=\frac{50}{9}\)
f) \(\left(3x-6\right):3=32\)
\(3x-6=96\)
\(3x=102\)
\(x=34\)
g) \(\left(3x-6\right)-3=32\)
\(3x-6=35\)
\(3x=41\)
\(x=\frac{41}{3}\)
h) \(\left(3x-2^4\right).7^3=2.7^4\)
\(\left(3x-2^4\right)=2.7=14\)
\(\left(3x-16\right)=14\)
\(3x=14+16=30\)
\(x=10\)
i) \(\left|x\right|=\left|-7\right|\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
k) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
l) \(\left|x-2\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
m) \(x+\left|-2\right|=0\)
\(x+2=0\)
\(x=-2\)
o) \(72-3\left|x+1\right|=9\)
\(3\left|x-1\right|=63\)
\(\left|x-1\right|=21\)
\(\Rightarrow\orbr{\begin{cases}x-1=21\\x-1=-21\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=-20\end{cases}}}\)
p) Ta có: \(\left|x-1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
mà \(x+1< 0\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-2\)
q) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
hok tốt!!