K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

△= \(7^2+4.4.1=65\)

\(\Rightarrow x_1=\frac{7+\sqrt{65}}{8},x_2=\frac{7-\sqrt{65}}{8}\)

M = \(x_1^2+x_2^2=\left(\frac{7+\sqrt{65}}{8}\right)^2+\left(\frac{7-\sqrt{65}}{8}\right)^2=\frac{114+14\sqrt{65}+114-14\sqrt{65}}{64}=\frac{228}{64}=\frac{57}{16}\)

26 tháng 11 2019

\(\Delta=49-4.\left(-1\right).4=65>0\) => pt có 2 n0 pb

\(Vi-et\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{7}{4}\\x_1x_2=-\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{7}{4}\right)^2-2.\left(-\frac{1}{4}\right)=\frac{57}{16}\)

18 tháng 8 2017

Ta gọi hai nghiệm của phương trình đã cho là x 1 , x 2 . Theo hệ thức Vi-et ta có:  x 1 x 2 = − 2 5 x 1 + x 2 = 9 5

⇔ M = x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 − 2 x 1 x 2 = 81 25 − 2 − 2 5 = 101 25

Đáp án cần chọn là: C

19 tháng 11 2017

Đáp án B

Phương trình  x 2 - 5 x + 2 = 0 có hai nghiệm  x 1 ;   x 2

Theo hệ thức Vi-ét ta có:

29 tháng 9 2017

Phương trình x 2 − 5x + 2 = 0 có  = ( − 5 ) 2 – 4.1.2 = 17 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 5 x 1 . x 2 = 2

Ta có

A = x 1 2 + x 2 2   = ( x 1 + x 2 ) 2   –   2 x 1 . x 2   = 5 2 – 2 . 2 = 21

Đáp án: B

21 tháng 12 2018

Đáp án B

Phương trình x 2 - 5 x + 2 = 0 có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có:

8 tháng 7 2017

Phương trình 2 x 2 − 11x + 3 = 0 3 = 97 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 11 2 x 1 . x 2 = 3 2

Ta có

A = x 1 2   + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 1 + x 2 ) = 11 2 2 − 2. 3 2 = 109 4

Đáp án: A

a: Δ=(2m-1)^2-4*(-m)

=4m^2-4m+1+4m=4m^2+1>0

=>Phương trình luôn có nghiệm

b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(2m-1\right)^2-3\left(-m\right)\)

=4m^2-4m+1+3m

=4m^2-m+1

=4(m^2-1/4m+1/4)

=4(m^2-2*m*1/8+1/64+15/64)

=4(m-1/8)^2+15/16>=15/16

Dấu = xảy ra khi m=1/8

NV
4 tháng 4 2021

\(\Delta=a^2+8>0\Rightarrow\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=-2\end{matrix}\right.\)

\(N=x_1^2+x_2^2+x_1x_2+2\left(x_1+x_2\right)+4\)

\(=\left(x_1+x_2\right)^2-x_1x_2+2\left(x_1+x_2\right)+4\)

\(=a^2+2+2a+4\)

\(N=a^2+2a+6=\left(a+1\right)^2+5\ge5\)

\(N_{min}=5\) khi \(a=-1\)

7 tháng 6 2021

\(\Delta=4m^2+69\ge0\Leftrightarrow\begin{matrix}m\ge\dfrac{\sqrt{69}}{2}\\m\le-\dfrac{\sqrt{69}}{2}\end{matrix}\)

viet : \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-\left(m^2+5\right)\end{matrix}\right.\)

ta có : \(A=\left(x_1+x_2\right)^2-x_1x_2+2m=49+m^2+5+2m=m^2+2m+54\)

vì \(m\ge\dfrac{\sqrt{69}}{2}\Rightarrow m^2+2m+54\ge\dfrac{69+2\sqrt{69}+216}{4}\) hay \(A\ge\dfrac{69+2\sqrt{69}+216}{4}\)

8 tháng 6 2019

Đáp án D

Đặt 3 x 2 − x = t > 0  ta được

t 2 + 3 t − 4 = 0 ⇔ t = 1 t = − 4 l o a i ⇒ 3 x 2 − x = 1 ⇔ x 2 − x = 0 ⇔ x 1 = 0 x 2 = 1

P = x 1 2 − x 2 2 = − 1 .

Q=(x1+x2)^2-2x1x2+6x1x2

=(-5)^2+4*(-4)

=25-16=9

12 tháng 5 2023

Áp dụng Viét có: `{(x_1+x_2=-b/a=-5),(x_1.x_2=c/a=-4):}`

Ta có: `Q=(x_1+x_2)^2+4x_1.x_2`

`<=>Q=(-5)^2+4.(-4)`

`<=>Q=9`