a2+2019a-2020ab2+b-ab+2020b2-2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko thể dùng 1 trường hợp cụ thể để chứng minh dạng tổng quát.
Cách chứng minh bài này rất đơn giản:
\(a< b\Rightarrow2019a< 2019b\)
\(\Rightarrow-2019a>-2019b\)
\(\Rightarrow-2019a+2020>-2019b+2020>-2019b+2018\)
Vậy \(2020-2019a>2018-2019b\)
\(a< b\Rightarrow2019a< 2019b\Rightarrow-2019a>-2019b\)
Lại có 2020 > 2018 nên \(2020-2019a>2018-2019b\).
Lời giải:
Ta có:
$2(ab+bc+ac)=(a+b+c)^2-(a^2+b^2+c^2)=6^2-12=24=2(a^2+b^2+c^2)$
$\Rightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$
$\Leftrightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$
$\Rightarrow a=b=c$. Mà $a+b+c=6$ nên $a=b=c=2$
Khi đó:
$A=(2-3)^{2020}+(2-3)^{2020}+(2-3)^{2020}=1+1+1=3$
BL
=a^2-1+2019a-2019-2020ab^2+2020b^2+b-ab
=(a-1)(a+1)+2019(a-1)-2020b^2(a-1)-b(a-1)
=(a-1)(a+2020-2021b)
:)