Cho hàm số y=f(x)=x; y=g(x)=-2x; y=h(x)=1; y=k(x)=5; y=z(x)=\(\frac{1}{x}\); y=t(x)=\(^{x^2}\). Trong các hàm số trên, hàm số nào có tính chất f(-x)=f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dựa vào hình vẽ, ta thấy rằng
+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3
Và f '(x) đổi dấu từ - → + khi đi qua x 1 , x 3 ⇒ Hàm số có 2 điểm cực tiểu, 1 điểm cực đại
+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1 đồng biến trên x 1 ; x 2 (1) sai
+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3 (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5 (chứa khoảng (3;5)) ⇒ 2 ; 3 đúng
Vậy mệnh đề 2,3 đúng và 1, 4 sai.
Chọn B
+ Dựa vào đồ thị hàm số ta thấy :
- Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và ( 3; 5) .
- Hàm số y= f( x) nghịch biến trên khoảng ( 1 ; 3) và ( 5 ; + ∞)
Chọn C
+ Áp dụng công thức đạo hàm của hàm hợp ta có:
g’( x) = ( 2-x)’. f’( 2-x) = -f’( 2-x)
+ Nhận xét: Hàm số y= f( x) đã cho nghịch biến trên các khoảng (- ∞; -1) và ( 1;4) ( trên 2 khoảng đó f’(x) < 0) .
+ Hàm số đồng biến khi và chỉ khi
Đáp án B.
f ' (x) đổi dấu 1 lần, suy ra hàm số y = f(x) có 1 điểm cực trị.
Đáp án C
Khi đó hàm số y=f(x) đạt cực tiểu tại x = x 1 hay hàm số y=f(x) có 1 điểm cực trị.
Ảnh đẹp thì