Thực hiện phép tính : \(\frac{4^{21}.\left(-3\right)^{40}}{6^{41}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)
= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)
= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)
=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)
=\(\frac{1}{2}-1-1\)
=\(\frac{-3}{2}\)
b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)
= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)
= \(-12:\left\{\frac{-1}{12}\right\}^2\)
= \(-12:\frac{1}{144}\)
= \(-12.144\)
= -1728
c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)
= \(\frac{-7}{6}\)
d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)
= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)
= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)
= \(10.\frac{7}{5}\)
= 14
e) (1+23−14).(0,8−34)2
= (1+23−14).(\(\frac{4}{5}\)−34)2
= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)
= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
= \(\frac{17}{20}.\frac{1}{400}\)
= \(\frac{17}{8000}\)
a,\(\frac{-2}{5}+\frac{7}{21}=\frac{-2}{5}+\frac{1}{3}=\frac{-6}{15}+\frac{5}{15}=\frac{-1}{15}\)
b,\(\left(\frac{1}{3}\right)^5.3^5-2020^0=\left(\frac{1}{3}.3\right)^5-1=1^5-1=1-1=0\)
c,\(\left(-\frac{1}{4}\right).6\frac{2}{11}+3\frac{9}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right).\left(6\frac{2}{11}+3\frac{9}{11}\right)=\left(-\frac{1}{4}\right).\left[\left(6+3\right)+\left(\frac{2}{11}+\frac{9}{11}\right)\right]\)
\(=\left(-\frac{1}{4}\right).\left[9+1\right]=\frac{-1}{4}.10=\frac{\left(-1\right).10}{4}=\frac{\left(-1\right).5}{2}=\frac{-5}{2}\)
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
\(\left(5-\frac{2}{3}+\frac{3}{7}\right):\left(24-25+\frac{4}{21}-\frac{8}{21}\right)\)
\(\left(\frac{5.21-14+9}{21}\right):\left(\frac{-21-4}{21}\right)\)=\(\left(\frac{5.21-5}{21}\right).\left(\frac{21}{-25}\right)\)=\(\frac{5\left(21-1\right)}{\left(-5\right).5}=\frac{20}{-5}\)
=-4
a) \(1\frac{3}{19}+\frac{8}{21}-\frac{3}{19}+0.5+\frac{13}{21}\)
\(=\left(1\frac{3}{19}-\frac{3}{19}\right)+\left(\frac{8}{21}+\frac{13}{21}\right)+0.5\)
\(=1+1+0.5=2.5\)
b) \(\left(-\frac{3}{4}+\frac{2}{7}\right):\frac{3}{7}+\left(\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left(\frac{-3}{4}+\frac{2}{7}+\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=0:\frac{3}{7}=0\)
\(\begin{array}{l} - \left( { - \frac{3}{4}} \right) - \left( {\frac{2}{3} + \frac{1}{4}} \right)\\ = \frac{3}{4} - \frac{2}{3} - \frac{1}{4}\\ = \left( {\frac{3}{4} - \frac{1}{4}} \right) - \frac{2}{3}\\ = \frac{2}{4} - \frac{2}{3}\\= \frac{1}{2} - \frac{2}{3}\\ = \frac{3}{6} - \frac{4}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
\(A=\left(2-\frac{3}{2}\right).\left(2-\frac{4}{3}\right).\left(2-\frac{5}{4}\right).\left(2-\frac{6}{5}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(A=\frac{1}{5}\)
\(A=\left(2-\frac{3}{2}\right)\times\left(2-\frac{4}{3}\right)\times\left(2-\frac{5}{4}\right)\times\left(2-\frac{6}{5}\right)\)
\(\Rightarrow\)\(A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
\(\Rightarrow A=\frac{1}{5}\)
=\(y=\frac{\left(2^2\right)^{21}.3^{40}}{\left(2.3\right)^{41}}=\frac{2^{42}.3^{40}}{2^{41}.3^{41}}=\frac{2}{3}\)