Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=1+\frac{24.19}{2}=229\)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{49}+1\right)\)
= \(\left(\frac{1}{2}+\frac{2}{2}\right).\left(\frac{1}{3}+\frac{3}{3}\right).\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{49}+\frac{49}{49}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{50}{49}\)
=\(\frac{3.4.5...50}{2.3.4...49}\)
=\(\frac{50}{2}\)
=25
a) \(2\frac{3}{4}\cdot\left(-0,4\right)-1\frac{3}{5}\cdot2,75+1,2:\frac{4}{11}\)
\(=2\frac{3}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}:\frac{4}{11}\)
\(=\frac{11}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}\cdot\frac{11}{4}\)
\(=\frac{11}{4}\left(-\frac{2}{5}-1\frac{3}{5}+\frac{6}{5}\right)\)
\(=\frac{11}{4}\left(-\frac{2}{5}-\frac{8}{5}+\frac{6}{5}\right)\)
\(=\frac{11}{4}\cdot\left(-\frac{4}{5}\right)=\frac{11}{1}\cdot\left(-\frac{1}{5}\right)=-\frac{11}{5}\)
b) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)....\left(\frac{1}{31}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{31}+\frac{31}{31}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{32}{31}\)
\(=\frac{3\cdot4\cdot5\cdot...\cdot32}{2\cdot3\cdot4\cdot...\cdot31}=\frac{32}{2}=16\)
c) Đặt \(C=1+2+3+...+30\)
Số số hạng là : \(\left(30-1\right):1+1=30\)(số)
Tổng của dãy số là : \(\frac{\left(1+30\right)\cdot30}{2}=465\)
Do đó : \(\frac{930}{C}=\frac{930}{465}=2\)
\(\begin{array}{l} - \left( { - \frac{3}{4}} \right) - \left( {\frac{2}{3} + \frac{1}{4}} \right)\\ = \frac{3}{4} - \frac{2}{3} - \frac{1}{4}\\ = \left( {\frac{3}{4} - \frac{1}{4}} \right) - \frac{2}{3}\\ = \frac{2}{4} - \frac{2}{3}\\= \frac{1}{2} - \frac{2}{3}\\ = \frac{3}{6} - \frac{4}{6}\\ = \frac{{ - 1}}{6}\end{array}\)