Bài 1 CMR
a,2n+1và 3n+1 là 2 số nguyên tố cùng nhau
b,2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
Câu 1: 2n + 5 và 3n + 7
Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)
6n + 15 - 6n - 14 ⋮ d
1 ⋮ d
⇒ d = 1
Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1
Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)
gọi 2.n +1 là một số lẻ bất kì (n thuộc N )
suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp
gọi d thuoocj vào ƯC(2n+1,2n+3 ) (d thuộc N*)
suy ra 2n+1 và 2n+3 chia hết cho d
suy ra [(2n+3) - (2n+1)] chia hết cho d
suy ra 2 chia hết cho d
suy ra d thuộc Ư(2) ={1;2}
suy ra d khác 2 (vì 2n+1 và 2n+3 là các số lẻ )
suy ra d =1
suy ra ƯC (2n+1 ,2n+3 ) =1
suy ra UWCLN (3n+1 , 2n+3) =1
suy ra 2n +1 và 2n+3 nguyên tố cùng nhau
vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau .
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
a, Gọi d là ƯCLN(2n+1,3n+1)
Có: 2n+1chia hết cho 2n+1
Suy ra: 3.(2n+1)chia hết cho 2n+1 hay 6n+3 chia hết cho 2n+1
Lại có 3n+1 chia hết 3n+1
Nên 2.(3n+1) chia hết cho 3n+1 hay 6n+2 chia hết cho 3n+1
Do đó (6n+3)-(6n+2) chia hết cho d
Hay 1 chia hết cho d
Suy ra d=1
Mà 2 số nguyên tố cùng nhau có ƯCLN là 1
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
P/s: nếu đúng thì hãy cho **** nha! ^-^