Cho ΔABC có AB < AC. Trên đường trung tuyến AD của ΔABC lấy E sao cho DA = DE
a, C/m tứ giác ABEC là hình bình hành
b, Kẻ AH và EK cùng vuông góc với BC ( H,K ∈ BE ). C/m EH // AK và EH = AK
M.n vẽ hình giúp em nữa ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
Ta có:
D là trung điểm của AC
E là trung điểm của AB suy ra DE là đường trung bình của tam giác ABC. Theo tính chất đường trung bình, ta có:
=>DE=\(\dfrac{BC}{2}\)(1); DE//BC(2)Mặt khác K là trung điểm của CG ;H là trung điểm của BG suy ra kh là đường trung bình của tam giác CGB. Theo tính chất đường trung bình ta có: KH//BC(3);KH=\(\dfrac{BC}{2}\)(4)Từ (1)(4) => DE=KHTừ (3)(2) => DE//KHXét tứ giác DEHK có: DE song song với HK và DE bằng HK(cmt)=> tứ giác DEHK là hình bình hành(dhnb)tik nhaa: Xét tứ giác BDCN có
M là trung điểm của BC
M là trung điểm của DN
Do đó: BDCN là hình bình hành
b: Xét tứ giác ANDB có
DB//AN
DB=AN
Do đó: ANDB là hình bình hành
mà \(\widehat{NAB}=90^0\)
nên ANDB là hình chữ nhật
Suy ra: AD=BN
a)
Vì D đối xứng N qua M (gt)
=> M là trung điểm của DM (đn)
Xét tứ giác BDCN có
M là trung điểm BC (gt)
M là trung điểm DM (cmt)
=> Tứ giác BDCN là hbh (dhnb hbh)
b)
Vì BDCN là hbh( cmt)
=> BD//NC
=> BD//AN (1) và BD=NC
mà NC=AN (N là trung điểm AC)
=> BD=NC (bắc cầu) (2)
Mà BAC=90 (gt) (3)
Từ (1) và (2), (3)=> BDNA hcn (dhnb hcn)
=> AD=BN (t/c đường chéo hcn)
Xét tam giác ACE có
N là trung điểm AC (gt)
FN//EC (BN//DC)
=> F là trung điểm của AE ( đtb)
mà N là trung điểm của AC (gt)
=> FN là đtb của tam giác AEC ( đn)
=> FN= 1/2 EC (1)
Xét tam giác FNM=tam giác EMD (cgc)
=> DE=FN ( 2 góc t/ư)(2)
Từ (1) và (2) => DE=1/2 EC ( bc)
a: Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
Do đó: AIHK là hình chữ nhật
a: Xét tứ giác ABEC có
D là trung điểm của BC
D là trung điểm của AE
Do đó: ABEC là hình bình hành