K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

a: Xét tứ giác ABEC có

D là trung điểm của BC

D là trung điểm của AE

Do đó: ABEC là hình bình hành

a: Xét tứ giác AMDN có 

\(\widehat{AMD}=\widehat{AND}=\widehat{NAM}=90^0\)

Do đó: AMDN là hình chữ nhật

10 tháng 1 2018

A B C M E D F

a) Xét \(\Delta ABC\) có :

- Theo giả thuyết \(\Delta ABC\) vuông tại A

=> \(BC^2=AB^2+AC^2\) (Định lí PITAGO)

=> \(BC^2=6^2+8^2\)

=> \(BC^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Mà có : Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền

=> \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Có thêm : \(BM=\dfrac{1}{2}BC\left(gt\right)\)

\(\Rightarrow BM=AM=5\left(cm\right)\)

b) Xét tứ giác \(AEMF\) có :

\(\widehat{MEA}=90^o\left(ME\perp AB-gt\right)\)

\(\widehat{MFA}=90^o\left(MF\perp AC-gt\right)\)

\(\widehat{EAM}=90^o\left(\Delta ABC\perp A-gt\right)\)

=>Tứ giác \(AEMF\) là hình chữ nhật

c) Xét tứ giác \(MCDA\) có :

\(MF=FD\left(gt\right)\)

\(AF=FC\)

=> Tứ giác MCDA là hình bình hành

Mặt khác : \(MF\perp AC\left(gt\right)\)

=> Tứ giác MCDA là hình thoi. (đpcm)

a: Xét tứ giác BDCN có 

M là trung điểm của BC

M là trung điểm của DN

Do đó: BDCN là hình bình hành

b: Xét tứ giác ANDB có 

DB//AN

DB=AN

Do đó: ANDB là hình bình hành

mà \(\widehat{NAB}=90^0\)

nên ANDB là hình chữ nhật

Suy ra: AD=BN

4 tháng 1 2022

 

a)

Vì D đối xứng N qua M (gt)

=> M là trung điểm của DM (đn)

Xét tứ giác BDCN có

M là trung điểm BC (gt)

M là trung điểm DM (cmt)

=> Tứ giác BDCN là hbh (dhnb hbh)

b) 

Vì BDCN là hbh( cmt)

=> BD//NC

=> BD//AN (1) và BD=NC

mà NC=AN (N là trung điểm AC)

=> BD=NC (bắc cầu) (2)

Mà BAC=90 (gt) (3)

Từ (1) và (2), (3)=> BDNA hcn (dhnb hcn)

=> AD=BN (t/c đường chéo hcn)

 

Xét tam giác ACE có

N là trung điểm AC (gt)

FN//EC (BN//DC)

=> F là trung điểm của AE ( đtb)

mà N là trung điểm của AC (gt)

=> FN là đtb của tam giác AEC ( đn)

=> FN= 1/2 EC (1)

Xét tam giác FNM=tam giác EMD (cgc)

=> DE=FN ( 2 góc t/ư)(2)

Từ (1) và (2) => DE=1/2 EC ( bc)

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0