Giải phương trình: [2(x + y) + 1 - 1/(1 - 2x - 2y] : [2x + 2y - (4x^2 + 8xy + 4y^2)/(2x + 2y - 1)] + 2(x + y)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TN
0
K
2 tháng 8 2021
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
30 tháng 11 2022
\(=\left(\dfrac{1+2\left(x-y\right)\left(2x-2y+1\right)-2x+2y-1}{2x-2y+1}\right):\dfrac{\left(2x-2y\right)\left(2x-2y+1\right)-4x^2+8xy-4y^2}{2x-2y+1}\)
\(=\dfrac{1+\left(2x-2y\right)^2+2x-2y-2x+2y-1}{2x-2y+1}\cdot\dfrac{2x-2y+1}{\left(2x-2y\right)^2+2x-2y-4x^2+8xy-4y^2}\)
\(=\dfrac{\left(2x-2y\right)^2}{4x^2-8xy+4y^2+2x-2y-4x^2+8xy-4y^2}=2x-2y\)
=2(x-y) luôn là số chẵn