Tìm 2 số tự nhiên liên tiếp có 2 chữ số; biết rằng một số chia hết cho 25, một số chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Gọi hai số cần tìm có dạng là a;a+1
Theo đề, ta có: a(a+1)=156
=>a^2+a-156=0
=>(a+13)(a-12)=0
=>a=12
=>Hai số cần tìm là 12 và 13
2:
Gọi ba số liên tiếp cần tìm lần lượt là a;a+1;a+2
Theo đề, ta có: a(a+1)(a+2)=3360
=>a^3+3a^2+2a-3360=0
=>a=14
=>Ba số cần tìm là 14;15;16
câu 1:số lớn 1086 số bé:923
câu 2:69
câu 3:389
câu 4:19
câu 5:39
câu 6: 107 và 108
câu 7:209 và 210
câu 8:1004 và 1005
câu 9:168 và 170
câu 10: 346 và 348
Gọi số cần tìm là ab.
Theo bài ra ta có: 1+2+…+ab=nab(a\(\in\)Z)
=> \(\frac{ab.\left(ab+1\right)}{2}=n.100+ab\)
=> \(ab.\left(ab+1\right)=n.200+2.ab\)
=>\(ab.\left(ab+1\right)-2.ab=n.200\)
=> \(ab.\left(ab-1\right)=n.200\)
=> ab.(ab-1)=(n.1).200=(n.2).100=(n.4).50=(n.8).25=(n.25).8=(n,50).4=(n.100).2=(n.200).1
Vì ab là số có 2 chữ số.
=> ab.(ab-1)=(n.4).50=(n.8).25
*Xét ab.(ab-1)=(n.4).50
-Với ab=50=>ab-1=49=4n=>n=49/4(vô lí)
-Với ab-1=50=>ab=51=4n=>n=51/4(vô lí)
*Xét ab.(ab-1)=(n.8).25
-Với ab=25=>ab-1=24=8n=>n=3.Thử lại: 1+2+…+25=325(thỏa mãn)
-Với ab-1=25=>ab=26=8n=>n=26/8(vô lí)
Vậy số cần tìm là 25.
Đặt \(A=\frac{2^{2006}+7}{2^{2004}+7}\);\(B=\frac{2^{2003}+1}{2^{2001}+1}\)
\(A-B=\frac{2^{2006}+7}{2^{2004}+7}-\frac{2^{2003}+1}{2^{2001}+1}=\frac{2^{4007}+2^{2006}+7.2^{2001}+7-2^{4007}+2^{2004}+7-2^{2003}.7}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}\)
\(=\frac{2^{2001}\left(7+2^5+2^3-7.2^2\right)+14}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}=\frac{19.2^{2001}+14}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}>0\)
=> A > B
1/ \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Leftrightarrow\left|\frac{a-b}{c-d}\right|=\left|\frac{a+b}{c+d}\right|\Leftrightarrow\orbr{\begin{cases}\frac{a-b}{c-d}=\frac{a+b}{c+d}\\\frac{b-a}{c-d}=\frac{a+b}{c+d}\end{cases}}\)
Xét mỗi trường hợp ta được đpcm.