K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\\ \frac{cx-az}{b}=\frac{cak-ack}{b}=0\\ \frac{bz-cy}{a}=\frac{bck-cbk}{a}=0\\ \Rightarrow\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

17 tháng 11 2019

nếu thấy cm ngược lại thì bạn suy ngược lên đi =))))

7 tháng 1 2017

bn chứng minh điều ngược lại đúng và trong đáp án quyển SBT đấy

22 tháng 8 2022

Thế thì dễ quá đi bạn à.đây là nâng cao

16 tháng 10 2018

\(\frac{bz-cy}{a}\)\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)\(\frac{cay-cbx}{c^2}\)

Áp dụng t/c ãy tỉ số bằng nhau, ta có:

8 tháng 8 2019

ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041

4 tháng 12 2020

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)

                                                                                      \(=\frac{0}{a^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)

8 tháng 8 2021

Ta có :

\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)