K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\\ \frac{cx-az}{b}=\frac{cak-ack}{b}=0\\ \frac{bz-cy}{a}=\frac{bck-cbk}{a}=0\\ \Rightarrow\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

17 tháng 11 2019

nếu thấy cm ngược lại thì bạn suy ngược lên đi =))))

21 tháng 8 2020

GTLN chứ ?

\(P\le\frac{1}{9}\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}+\frac{1}{az}+\frac{1}{bx}+\frac{1}{cy}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

?

21 tháng 8 2020

tìm giá trị nhỏ nhất cơ mà bạn PHÙNG MINH QUÂN ???

a) Xét (O) có 

\(\widehat{ZBA}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ZBA}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{ZBY}=90^0\)

Xét tứ giác XYZB có 

\(\widehat{ZBY}=\widehat{ZXY}\left(=90^0\right)\)

\(\widehat{ZBY}\) và \(\widehat{ZXY}\) là hai góc đối

Do đó: XYZB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

3 tháng 9 2018

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)

\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)

Xét  \(a+b+c=0\), ta có :

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Xét \(x+y-1=0\),ta có : 

\(x=1-y\)

\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)

19 tháng 6 2022

sai

10 tháng 7 2020

Đây là lời giải của mình bên đó nhé.

10 tháng 7 2020

Nên ko tặng GP đâu:))