K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017
mình ko biết

ta có 1986​​≡0(mod3)

<=> 19862004≡0(mod3)

<=> 19862004-1≡-1(mod3)

=> 19862004 không chia hết cho 3  (1)

Ta lại có : 1000≡1(mod3)

<=> 10002004≡12004≡1(mod30

<=> 10002004-1≡0(mod3)

do đó 10002004-1 \(⋮\)3  (2)

Từ (1) và (2) ta có M không thể là số nguyên (dpcm)

8 tháng 11 2016

* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1 
=> 1994^100 - 1 chia hết cho 1993 
hiển nhiên 1994^100 > 1993 
=> 1994^100 - 1 là hợp số 

* ta cũng có thể dùng khai triển nhị thức: 
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1) 
=> 1994^100 - 1 là hợp số 
-------------- 
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì??? 
có lẽ ý người ra đề muốn giải theo cách khác!!! 

1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3 
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3 
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố 

8 tháng 11 2016

1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1 
=> 1994^100 - 1 chia hết cho 1993 
hiển nhiên 1994^100 > 1993 
=> 1994^100 - 1 là hợp số 

* ta cũng có thể dùng khai triển nhị thức: 
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1) 
=> 1994^100 - 1 là hợp số 
-------------- 
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì??? 
có lẽ ý người ra đề muốn giải theo cách khác!!! 

1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3 
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3 
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố 

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Lời giải:

Gọi $\text{B(2021)}$ là bội của $2021$

$2022^n-1=(2021+1)^n-1=\text{B(2021)}+1-1=\text{B(2021)}$

Mà $2021=43\times 47$ không phải số nguyên tố

$\Rightarrow 2022^n-1$ không là số nguyên tố 

$\Rightarrow 2022^n-1, 2022^n+1$ không thể đồng thời là số nguyên tố. 

11 tháng 12 2015

Mình thử n = 2 thì 2n - 1 = 2 . 2 - 1 = 3 (3 là số nguyên tố)

n = 2 thì 2n + 1 = 2 . 2 + 1 = 5 (5 là số nguyên tố)

Vậy đề bạn sai

 

30 tháng 9 2018

\(A=\frac{1968^{2004}-1}{1000^{2004}-1}=\frac{1968}{1000}=\)\(1,986\)

Vì \(1,986\notin Z\)

\(\Rightarrow A=\frac{1986^{2004}-1}{1000^{2004}-1}\)không thể là số nguyên

18 tháng 1 2019

Nhận xét:Một số chính phương khi chia cho 3 và 4 có số dư là 0 hoặc 1(không chứng minh được thì ib vs mik)

Từ giả thiết,suy ra p chia hết cho 2 và 3 nhưng không chia hết cho 4

Như vậy vì p chia hết cho 3 suy ra p-1 chia 3 dư 2.suy ra p-1 không là số chính phương.(1)

Mặt khác  p chia hết cho 2 mà không chia hết cho 4 suy ra p chia 4 dư 2 suy ra p+1 chia 4 dư 3 không là số chính phương.(2)

Từ (1) và (2) suy ra điều cần chứng minh.

14 tháng 8 2015

n ko chia het cho 3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3

30 tháng 10 2016

(dk cua k) la gi vay

8n−1;8n;8n+18n−1;8n;8n+1 là 3 số tự nhiên liên tiếp nên chia hết cho 3.mà 8^n không chia hết cho 3 nên 1 trong 2 số còn lại chia hết cho 3.
Trường hợp 2 số đó là 2 và 3 không tìm được số tự nhiên n thoả mãn.vậy chúng không thể nguyên tố cùng nhau.