K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2019

\(cosa=\frac{1}{3}\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\frac{2\sqrt{2}}{3}\)

Thay giá trị vào M và bấm máy

13 tháng 8 2023

Ta có \(2\sin x\cos x=\left(\sin x+\cos x\right)^2-\left(\sin^2x+\cos^2x\right)\) 

\(=\left(\dfrac{3}{4}\right)^2-1=-\dfrac{7}{16}\)  

Từ đó \(A=\left|\sin x-\cos x\right|\)

\(\Rightarrow A^2=\left(\sin x-\cos x\right)^2\)

\(A^2=\sin^2x+\cos^2x-2\sin x\cos x\)

\(A^2=1+\dfrac{7}{16}=\dfrac{23}{16}\)

\(\Rightarrow A=\dfrac{\sqrt{23}}{4}\) (do \(A\ge0\))

 

 

 

 

 

13 tháng 8 2023

Có \(\cos x+\sin x=\dfrac{3}{4}\)

\(\Leftrightarrow\left(\cos x+\sin x\right)^2=\dfrac{9}{16}\)

\(\Leftrightarrow2.\sin x.\cos x+1=\dfrac{9}{16}\)

\(\Leftrightarrow\sin x.\cos x=-\dfrac{7}{32}\)

Lại có \(\left(\cos x+\sin x\right)^2=\left(\cos x-\sin x\right)^2+4.\sin x.\cos x=\dfrac{9}{16}\)

\(\Leftrightarrow\left(\cos x-\sin x\right)^2=\dfrac{23}{16}\)

\(\Leftrightarrow\left|\sin x-\cos x\right|=\dfrac{\sqrt{23}}{4}\)

7 tháng 4 2022

mình làm r nha

https://hoc24.vn/cau-hoi/biet-cotadfrac12-gia-tri-bieu-thuc-adfrac4sinalpha5cosalpha2sinalpha-3cosalpha-bang-bao-nhieughi-ro-tung-loi-giai-nha.5724337531039

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Lời giải:

$\cos a=\sqrt{1-\sin ^2a}=\frac{4}{5}$

$\tan a=\frac{\sin a}{\cos a}=\frac{3}{5}: \frac{4}{5}=\frac{3}{4}$

$A=2\tan a+\cos a=2.\frac{3}{4}+\frac{4}{5}=\frac{23}{10}$

NV
26 tháng 3 2022

\(\dfrac{2sina+cosa}{2sin^3a-cos^3a}=\dfrac{\dfrac{2sina}{cos^3a}+\dfrac{cosa}{cos^3a}}{\dfrac{2sin^3a}{cos^3a}-\dfrac{cos^3a}{cos^3a}}=\dfrac{2tana.\dfrac{1}{cos^2a}+\dfrac{1}{cos^2a}}{2tan^3a-1}\)

\(=\dfrac{2tana\left(1+tan^2a\right)+1+tan^2a}{2tan^3a-1}=...\) (thay số và bấm máy)

27 tháng 3 2022

Em vẫn ch hiểu tại sao cosa/cos3a lại ra 1/cos2a thầy giải thích giúp em vs ạ 

NV
4 tháng 3 2021

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

-4 ở đâu ra vậy ạ

 

NV
4 tháng 2 2021

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)

NV
8 tháng 5 2021

\(P=sin^22x-\left[2sin\dfrac{x}{2}cos\dfrac{x}{2}\left(cos^4\dfrac{x}{2}-sin^4\dfrac{x}{2}\right)\right]^2\)

\(=sin^22x-\left[sinx\left(cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\right)\left(cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}\right)\right]^2\)

\(=sin^22x-\left[sinx.cosx.1\right]^2\)

\(=sin^22x-\left[\dfrac{1}{2}sin2x\right]^2\)

\(=\dfrac{3}{4}sin^22x=\dfrac{3}{4}\left(1-cos^22x\right)=\dfrac{3}{4}\left(1-\dfrac{1}{4}\right)=\dfrac{9}{16}\)

8 tháng 5 2021

cảm ơn bạn nhìu :3