Cho \(\frac{a}{b}=\frac{c}{d}\)CMR
1) \(\frac{a^{2020}-b^{2020}}{a^{2020}+b^{2020}}=\frac{^{c^{2020}-d^{2020}}}{c^{2020}+d^{2020}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}.\)
=> \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{\left(a+b\right)^{2020}}{\left(b+d\right)^{2020}}\)
Xong lại áp dụng tính chất dãy tỉ số = nhau \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{a^{2020}-b^{2020}}{c^{2020}-d^{2020}}.\)
Kết hợp lại là ra nhé
Từ a/b=c/d =>a/c=b/d
Đặt a /c =b /d =k =>a =ck, b= dk
=>a2020/b2020 =(ck)2020/(dk)2020 = c2020 . k2020/ d2020 .k2020 = c2020/d2020
(a-c)2020/ (b-d)2020 = (ck-c)2020/ (dk-d)2020 =[ c.(k-1)]2020/ [ d.(k-1)]2020 =c2020.(k-1)2020 / d2020. (k-1)2020 = c2020/ d2020
=> a2020/ b2020 = (a-c)2020 / (b-d)2020 (vì đều bằng c2020/d2020)
Ta có: \(2020+c^2=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\)
Tương tự => \(2020+a^2=\left(a+b\right)\left(c+a\right)\)
và \(2020+b^2=\left(a+b\right)\left(b+c\right)\)
=> PT = \(\frac{a-b}{\left(b+c\right)\left(c+a\right)}+\frac{b-c}{\left(a+b\right)\left(c+a\right)}+\frac{c-a}{\left(a+b\right)\left(b+c\right)}\)
= \(\frac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = \(\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = 0
\(Q=\frac{a}{b+2020-a}+\frac{b}{c+2020-b}+\frac{c}{a+2020-c}\)
\(Q=\frac{a}{b+a+b+c-a}+\frac{b}{c+a+b+c-b}+\frac{c}{a+a+b+c-c}\)
\(Q=\frac{a}{2b+c}+\frac{b}{2c+a}+\frac{c}{2a+b}\)
Áp dụng BĐT Cauchy-Schwarz:
\(Q=\frac{a^2}{a\cdot\left(2b+c\right)}+\frac{b^2}{b\cdot\left(2c+a\right)}+\frac{c^2}{c\cdot\left(2a+b\right)}\ge\frac{\left(a+b+c\right)^2}{3\cdot\left(ab+bc+ca\right)}\ge\frac{3\cdot\left(ab+bc+ca\right)}{3\cdot\left(ab+bc+ca\right)}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2020}{3}\)
Ta chứng minh bổ đề:
Với x,y,z dương thì:
\(8\left(x+y+z\right)\left(xy+yz+zx\right)\le9\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow x\left(y-z\right)^2+y\left(z-x\right)^2+z\left(x-y\right)^2\ge0\)(đúng)
Quay lại bài toán ta có:
\(A^{2020}=\left(\sqrt[2020]{\frac{a}{a+b}}+\sqrt[2020]{\frac{b}{b+c}}+\sqrt[2020]{\frac{c}{c+a}}\right)^{2020}\)
\(=\left(\sqrt[2020]{\frac{a\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}}+\sqrt[2020]{\frac{b\left(b+a\right)}{\left(b+c\right)\left(b+a\right)}}+\sqrt[2020]{\frac{c\left(c+b\right)}{\left(c+a\right)\left(c+b\right)}}\right)^{2020}\)
\(\le\left(1+1+1\right)^{2018}.2.\left(a+b+c\right).\left(\frac{a}{\left(a+b\right)\left(a+c\right)}+\frac{b}{\left(b+c\right)\left(b+a\right)}+\frac{c}{\left(c+a\right)\left(c+b\right)}\right)\)
\(=3^{2018}.\frac{4\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\le3^{2018}.\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3^{2020}}{2}\)
\(\Rightarrow A\le\frac{3}{\sqrt[2020]{2}}\)
thay 2020 = abc vào biểu thức A ta được :
\(A=\frac{2020a}{ab+2020a+2020}+\frac{b}{bc+b+2020}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abc.a}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac+1+c}{ac+c+1}=1\)
VẬy A=1
Ko khó đâu bn ơi
Đặt a/b=c/d=k
=> a=bk và c=dk
Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)
= (k^2020-1)/(k^2020+1)
Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)
= (k^2020-1)/(k^2020+1)
=> đpcm.