Tìm m để phương trình x^2 + mx +1 =0 và x^2 +x+m=0 có ít nhất 1 nghiem chung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 2 pt có ít nhất một nghiệm chung thì
x^2+2x+m=x^2+mx+2=>m=2
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên:
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 1 = 0 x 0 2 + x 0 + m = 0
⇒ (m – 1)x0 + 1 – m = 0
⇔ (m – 1)(x0 – 1) = 0 (*)
Xét phương trình (*)
Nếu m = 1 thì 0 = 0 (luôn đúng)
hay hai phương trình trùng nhau
Lúc này phương trình x2 + x + 1 = 0
vô nghiệm nên cả hai phương trình đều vô nghiệm.
Vậy m = 1 không thỏa mãn.
+) Nếu m ≠ 1 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 1 = 0 ta được m = −2
Thay m = −2 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: D
Gọi nghiệm chung đó là x0
Có x0^2=mx0-2m-1
x0(mx0-2m+1)-1=0
<=>x0^2+2=mx0-2m+1
x0(x0^2+2)-1=0
Đến đây bạn tìm ra x0 rồi thay vào tìm m nhé
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên.
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 2 = 0 x 0 2 + 2 x 0 + m = 0
⇒ (m – 2)x0 + 2 – m = 0 ⇔ (m – 2)(x0 – 1) = 0
Nếu m = 2 thì 0 = 0 (luôn đúng) hay hai phương trình trùng nhau.
Lúc này phương trình x2 + 2x + 2 = 0 ⇔ (x + 1)2 = −1
vô nghiệm nên cả hai phương trình đều vô nghiệm
Vậy m = 2 không thỏa mãn.
Nếu m ≠ 2 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 2 = 0
ta được 1 + m + 2 = 0 ⇔ m = −3
Vậy m = −3 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: B
\(\Delta=m^2-4.\left(-1\right)=m^2+4>0\)
\(\hept{\begin{cases}x_1=\frac{-m-\sqrt{m^2+4}}{2}\\x_2=\frac{-m+\sqrt{m^2+4}}{2}\end{cases}}\)
Để x1<2
\(\Rightarrow m+\sqrt{m^2+4}>-4\)
Có\(\sqrt{m^2+4}\ge\sqrt{4}=2\)
\(\Rightarrow m+2>-4\)
\(\Leftrightarrow m>-6\)
Vậy m>-6 để....