Làm tính chia
\(\left(2x^3+7x^2-4x\right):\left(x+4\right)=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(=3x^4-4x^3+2x^4-4x^3+14x^2\)
\(=5x^4-8x^3+14x^2\)
3x4 - 4x3 + 2x(x3 - 2x2 + 7x )
= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2
= 5x4 - 8x3 + 14x2
a) \(\left( {6{x^3} - 7{x^2} - x + 2} \right):\left( {2x + 1} \right)\)
b) $(x^4-x^3+x^2+3x):(x^2-2x+3)$
c) \(\left( {{x^2} + {y^2} + 6x + 9} \right):\left( {x + y + 3} \right)\)
\(=\left( {{x^2} + 6x + 9 - {y^2}} \right)\left( {x + y + 3} \right)\)
\(=\left[ {\left( {{x^2} + 2x.3 + {3^2}} \right) - {y^2}} \right]:\left( {x + y + 3} \right)\)
\(=\left[ {{{\left( {x + 3} \right)}^2} - {y^2}} \right]:\left( {x + y + 3} \right)\)
\(=\left( {x + 3 - y} \right)\left( {x + 3 + y} \right):\left( {x + y + 3} \right)\)
$= x + 3 - y$
$= x - y + 3$
(6x3 - 7x2 - x + 2) : (2x + 1)
= (6x3 + 3x2 - 10x2 - 5x + 4x + 2) : (2x + 1)
= [(6x3 + 3x2) - (10x2 + 5x) + (4x + 2)] : (2x + 1)
= [3x2(2x + 1) - 5x(2x + 1) + 2(2x + 1)] : (2x + 1)
= (3x2 - 5x + 2)(2x + 1) : (2x + 1)
= 3x2 - 5x + 2
(x4 - x3 + x2 + 3x) : (x2 - 2x + 3)
= (x4 + x3 - 2x3 - 2x2 + 3x2 + 3x) : (x2 - 2x + 3)
= [(x4 + x3) - (2x3 + 2x2) + (3x2 + 3x)] : (x2 - 2x + 3)
= [x3(x + 1) - 2x2(x + 1) + 3x(x + 1)] : (x2 - 2x + 3)
= (x3 - 2x2 + 3x)(x + 1) : (x2 - 2x + 3)
= x(x2 - 2x + 3)(x + 1): (x2 - 2x + 3)
= x(x + 1)
= x2 + x
(x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + 3 + y)(x + 3 - y) : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3
CHÚC BN HOK TỐT
@Vũ Khánh Ly Tớ không nói bạn sai hay là sao nhưng tại hơi khó nhìn sợ bạn đọc không biết nên tớ đăng bài này.
Lưu ý: Cách này cũng hơi thông thường nên tớ sẽ cố gắng nghĩ. Nếu ra tớ sẽ post lên
a)Dat \(x^2-4x+3=a;x^2-7x+6=b \Rightarrow a+b=2x^2-11x+9\)
....
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)
a) \(\left(2x-3\right)\left(x^2-2x+1\right)+2\left(2-x\right)^3\)
\(=2x\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)+2\left(2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\right)\)
\(=2x^3-4x^2+2x-3x^2+6x-3+2\left(8-12x+6x^2-x^3\right)\)
\(=2x^3-4x^2+2x-3x^2+6x-3+16-24x+12x^2-2x^3\)
\(=\left(2x^3-2x^3\right)+\left(-4x^2-3x^2+12x^2\right)+\left(2x+6x-24x\right)+\left(-3+16\right)\)
\(=5x^2-16x+13\)
b)
Vậy \(\left(2x^3-7x^2+2x+3\right):\left(x^2-4x+3\right)=2x+1\)
Câu b thêm dấu " - " ở chỗ 2x3 - 7x2 + 2x +3 và 2x3 - 8x2 + 6x nhé :)))
Học chia lớp 8 chưa em nhỏ :)? (hỏi thật đấy :) )
Thực hiện phép tính như sau :
^ thế này là số mũ há mày đừng tưởng cái j :)
Dư cuối cùng bằng 0 ta được thương \(2x^2-x\)
Từ đó ta có: \(\left(2x^3+7x^2-4x\right):\left(x+4\right)=2x^2-x\)
\(\left(2x^3+7x^2-4x\right):\left(x+4\right)\)
\(=\left[\left(2x^3+8x^2\right)+\left(-x^2-4x\right)\right]:\left(x+4\right)\)
\(=\left[2x^2\left(x+4\right)-x\left(x+4\right)\right]:\left(x+4\right)\)
\(=\left(x+4\right)\left(2x^2-x\right):\left(x+4\right)\)
\(=2x^2-x\)