K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kết quả hai phép tính bằng 0 nha

hok tốt

10 tháng 11 2019

0x0=0

1x0=0

Hok tốt!!!

18 tháng 7 2021

GIÚP TỚ VỚI 

 

18 tháng 7 2021

đăng ít thôi bạn! Nếu bạn đăng lẻ ra thì bn sẽ nhận đc sự trợ giúp nhanh hơn !

a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)

16 tháng 10 2019

a) Ta có: \(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)hay x=1

Vậy: S={1}

c) Ta có: \(x+x^4=0\)

\(\Leftrightarrow x\left(x^3+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)

mà \(x^2-x+1>0\forall x\)

nên x(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy: S={0;-1}

9 tháng 3 2021

Yêu cầu trả lời tất cả 6 câu

1)x^2-2x-1=0

<=> (x^2-2x+1)-2=0

<=>(x-1)2 =2

=>x-1 = \(\pm\sqrt{2}\)

=> x= \(\pm\sqrt{2}\) +1

2) x^2-x-1=0

<=> (x^2-x+1/4) -5/4=0

<=>(x+1/2)2= 5/4

=> x+1/2 = \(\pm\sqrt{\dfrac{5}{4}}\)

=>x=\(\pm\sqrt{\dfrac{5}{4}}\) - 1/2

3)x^2+x-3=0

<=> (x^2 + x + 1/4) -13/4=0

<=>(x+1/2)2 = 13/4

=> x+1/2 = \(\sqrt{\dfrac{13}{4}}\)

=> x= \(\sqrt{\dfrac{13}{4}}\) -1/2

4) 4x^2-4x-1=0

<=> (4x^2-4x+1)-2=0

<=>(2x-1)2 -2=0

<=> (2x-1)2 - \(\left(\sqrt{2}\right)^2\) =0

<=> (2x-1 - \(\sqrt{2}\) ) . (2x-1 +\(\sqrt{2}\) )=0

=> 2x-1-\(\sqrt{2}\) =0 hoặc 2x-1+\(\sqrt{2}\) =0

=> 2x= 1+\(\sqrt{2}\) hoặc 2x= 1 - \(\sqrt{2}\)

=> x=\(\dfrac{1+\sqrt{2}}{2}\) hoặc x=\(\dfrac{1-\sqrt{2}}{2}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

14 tháng 1 2018

mình sẽ trả lời câu 1 thôi nha

TH1:|x-2|=0                                                                                                              

th1:x-2=0=>x=2

th2:x-2=-0  x    =-0+2  x=2

TH2:|x+5|=0

th1:x+5=0  x   =0-5=-5

th2:x+5=-0  x  =-0-5   x=-0+-5=-5

cậu tư suy ra nhé!^^

     

7 tháng 5 2021

a,<=>x-x=3+5

<=>x=8

s:={8}

 

7 tháng 5 2021

1) \(\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Vậy tập nghiệm \(S=\left\{-2;3\right\}\)

2) \(\left(2x+3\right)\left(-x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=7\end{matrix}\right.\)

Vậy...

3) \(\left(x-1\right)\left(x+5\right)\left(-3x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\dfrac{8}{3}\end{matrix}\right.\)

Vậy...

4) \(x\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

Vậy...