Cho tam giác ABC, trên cạnh AC và AB lần lượt lấy E và F, BE cắt CF tại P sao cho tứ giác AEPF nội tiếp. Lấy D bất kì trên BC. Đường tròn (O1) qua D và E đồng thời tiếp xúc với (AEPF), đường tròn (O2) được định nghĩa tương tự. Chứng minh rằng BC là trục đẳng phương của (O1) và (O2).
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DD
Đoàn Đức Hà
Giáo viên
25 tháng 1 2022
Dễ thấy \(\Delta AFE~\Delta BAE\left(g.g\right)\)
\(\Rightarrow\widehat{AFE}=\widehat{BAE}\)
mà \(AEDB\)nội tiếp nên \(\widehat{BAE}+\widehat{BDE}=180^o\)
\(\Rightarrow\widehat{AFE}+\widehat{BDE}=180^o\)
\(\Rightarrow\widehat{CFE}+\widehat{CDE}=180^o\)
suy ra \(CDEF\)nội tiếp.
26 tháng 1 2018
If mày định trình bày một idea nào đó, mày should dùng brain của mày
7 tháng 3 2023
DA*DP=DB*DC
=>DA/DC=DB/DP
=>ΔDAB đồng dạng với ΔDCP
=>góc BAD=góc PCD
=>ABPC nội tiếp
Gọi hai tiếp tuyến tại E và F của (AEF) cắt nhau tại G. Áp dụng ĐL Pascal ta có ngay B,G,C thẳng hàng (1)
Ta thấy PG/(O1) = GE2 = PG/(AEF) = GF2 = PG/(O2) suy ra G nằm trên trục đẳng phương của (O1) và (O2) (2)
Ta lại có (O1) cắt (O2) tại D; D,B,C thẳng hàng. Kết hợp với (1) và (2) ta thu được BC là trục đẳng phương của (O1) và (O2) (đpcm).