K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).

Suy ra

AE’ + AF’ = (AC + CE’) + (AB + BF’)

= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.

Do đó: AE’ = AF’ = p.  

22 tháng 8 2021

Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).

Suy ra

AE’ + AF’ = (AC + CE’) + (AB + BF’)

= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.

Do đó: AE’ = AF’ = p.  

   

Bổ sung: ΔABC cân tại A

ΔABC cân tại A

=>AO đi qua trug diểm I của EF

Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)

Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB

=>OE//IK//GB

ΔABG có IK//GB

nên IK/BG=AI/AG

=>IK=AI*BG/AG

ΔABH có EI//BH

ΔABE có OE//BG

=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH

=>IH=AH*OE/AE

ΔABG có OE//BG

nên AB/AE=BG/OE

AH/AI=AB/AE=BG/OE

=>AH*OE=AI*BG 

=>AH*OG=AI*BG

=>IK=IH

=>ĐPCM

25 tháng 3 2023

có pải bài trên ko ạ