K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Ta có A=5+5^2+5^3+...+5^2007

=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2005+5^2006+5^2007)

=31x5+31x5^4+...+31x5^2005

=31x(5+5^4+...+5^2005) chia hết cho 31

Vậy A chia hết cho 31

11 tháng 11 2017

A = 5 + 52 + 53 + .....+ 52007

    = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) +.........+ (52005 + 52006 + 52007 )

    = 5( 1 + 5 + 52 ) + 54( 1 + 5 + 52 ) +.........+ 52005( 1 + 5 + 52 )

    = 31( 5 + 54 + .....+ 52005 )\(⋮\)31

Vậy A \(⋮\)31

17 tháng 9 2017

a/A= \(5^6-10^4=5^4.\left(5^2-2^4\right)=5^4.\left(25-16\right)=5^4.9\)chia hết cho 9

b/\(F=5+5^2+5^3+5^4+5^5+5^6=\left(5+5^2+5^3\right).\left(5^4+5^5+5^6\right)=\left(5+25+125\right)\left(5^4+5^5+5^6\right)=155.\left(5^4+5^5+5^6\right)\)

vì 155 chia hết cho 31 đa thức F chia hết cho 31

28 tháng 1 2018

a) \(5+5^2+5^3+....+5^{100}\)

đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )

\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+....+5^{99}.6\)

\(A=6\left(5+5^3+....+5^{99}\right)\)

vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)

b) \(2+2^2+2^3+....+2^{100}\)

đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )

\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )

\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(B=2.31+....+2^{96}.31\)

\(B=31\left(2+...+2^{96}\right)\)

vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)

28 tháng 1 2018

a) 5+5^2+5^3..+5^100

=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)

=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)

=5.6+5^3.6+.....+5^99.6

=6.(5+5^3+.....+5^99):6

18 tháng 10 2015

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng 

Ta có 

A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^96+5^97+5^98)

=> A=31+5^3(1+5+5^2)+...+5^96(1+5+5^2)

=> A=31+5^3.31+...+5^96.31

=> A=31(1+5^3+..+5^96) CHIA HẾT CHO 31 (tick né)

19 tháng 12 2015

a)A=2+2^2+2^3+...+2^60 chia hết cho 15

=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)

=>2.15+...+2^57.15

Vì 15 chia hết choo 15

=>a chia hết cho 15

b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31

=>(1+5+5^2)+...+5^56.(1+5+5^2)

=>31+....+5^56.3vi2 31 chia hết cho 31

=>B chia hết cho 31

 

19 tháng 12 2015

Ta có : 
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3) 
A=(2+2^5+...+2^57)*15 chia het cho 15 

8 tháng 8 2023

b) \(A=1+5+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\left(1+5^1+5^2\right)+5^3\left(1+5^1+5^2\right)+...+5^{69}\left(1+5^1+5^2\right)\)

\(\Rightarrow A=31+5^3.31+...+5^{69}.31\)

\(\Rightarrow A=31\left(1+5^3+...+5^{69}\right)⋮31\left(dpcm\right)\)

8 tháng 8 2023

a) \(A=1+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\dfrac{5^{71+1}-1}{5-1}=\dfrac{5^{72}-1}{4}\)

\(4A+x=5^{72}\)

\(\Rightarrow4.\dfrac{5^{72}-1}{4}+x=5^{72}\)

\(\Rightarrow5^{72}-1+x=5^{72}\)

\(\Rightarrow x=1\)

12 tháng 8 2018

A=(1+5+5^2)+(5^3+5^4+5^5)+.....+(5^77+5^78+5^79)

A=31+5^3.(1+5+5^2)+.....+5^77.(1+5+5^2)

A=31+5^3.31+....+5^77.31

A=31.(1+5^3+.....+5^77) chia hết cho 31