K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

S= abc+bca+cab

=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)

=(100a+100b+100c)+(10a+10b+10c)+(a+b+c)

=100(a+b+c)+10(a+b+c)+(a+b+c)

=(a+b+c).111

=(a+b+c).3.37

vì a; b; c nhỏ hơn hoặc bằng 9 nên a+b+c nhỏ hơn hoặc bằng 27

=> (a+b+c).3 nhỏ hơn hoặc bằng 27.3=81

giả sử S là số chính phương

mà 37 là số nguyên tố và (a+b+c).3 nhỏ hơn hoặc bằng 81

=> (a+b+c).3 phải bằng 37 để S=37.37=37²

mà 37 là số nguyên tố

=>a,b,c không phải là số tự nhiên

=> S không phải là số chính phương
 

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này

29 tháng 6 2021

a) A = abc + bca + cab 

=> A = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)

=>  A = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b

=>  A = 111a + 111b + 111c

=> A = 111( a+b+c)

vì 0< a+b+c ≤ 27 nên a + b + c không chia hết cho 37

mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37

=> A không phải là số chính phương

b) 

ababab=ab.10101

để ab là sô chính phương thì ab = 10101

mà ab là số có 2 chứ số

⇒ ababab không phải là số chính phương

29 tháng 6 2021

no la b 3 ban oi
 

6 tháng 5 2023

\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).

\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)

\(S=222\left(a+b+c\right)\)

 Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí. 

 Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.

6 tháng 5 2023

mà Lê Song Phương ơi

mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:

2x(aaa+bbb+ccc)

2x111x(a+b+c)

222x(a+b+c)

đk bạn

 

27 tháng 7 2016

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

27 tháng 7 2016

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

14 tháng 4 2019

100<=abc <=999
100<= n^2-1 <=999
11<=n <=32
100<=cba <=999
100<= (n-2)^2 <=999
11<=n-2 <=32
13<=n <=34
=> 13 <=n <=32 (*)
abc -cba =99(a-c) =n^2 -1 -(n-2)^2 =4n -5
4n-5 =99 t (t thuoc z)
n= 99k +26 (k in z)
(*)=> k =0 (duy nhat)
n=26
abc =26^2 -1 =675

ko chắc

14 tháng 4 2019

Bạn Anh thật ngốc hình như sai rồi (không có ý chê trách) bạn thử lắp vào đề xem

675-576=99 mà 99 không phải là số chính phương

26 tháng 2 2016

S=abc+bac+cab

=(100a+10b+c)+(100b+10a+c)+(100c+10a+b)

=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)

=111a+111b+111c=111(a+b+c)=3.37.(a+b+c)

Giả sử S là SCP,mà 37 nguyên tố

=>S chia hết cho 37.Nhưng a+b+c ko chia hết cho 37

Vậy trái giả thiết

=>đpcm

26 tháng 2 2016

lam sai roi