K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

5 số nha bạn.

tịk cho minh nha

5 tháng 4 2015

Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}<1\Rightarrow x>1\)

Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)

=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3

Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}<\frac{1}{2}\Rightarrow y>2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)

mà y >2 => y = 3 hoặc 4 

y = 3 => z = 6;

y = 4 => z = 4

nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}<\frac{2}{3}\Rightarrow y>\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)

theo đề bài x<= y nên y = 3 => z = 3

Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)

9 tháng 5 2019

x=1;y=9;z=8

Kiểm tra lại mà xem.

18 tháng 4 2020

Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)

Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)

Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)

Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)

khi đó từ gt, ta có:

\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)

\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)

\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=1-2xyz\ge\frac{3}{4}\)

từ các đánh giá trên => \(A\ge\frac{1}{4}\)

=> đpcm

10 tháng 2 2018

Áp dụng bđt : a^2+b^2+c^2 >= ab+bc+ca thì :

P = x^4+y^4+z^4/xyz >= x^2y^2+y^2z^2+z^2x^2/xyz

   >= xy.yz+yz.zx+zx.xy/xyz

     = xyz.(x+y+z)/xyz

     = x+y+z = -3

Dấu "=" xảy ra <=> x=y=z=-1 (T/m)

Vậy ...........

Tk mk nha