K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

Suy ra: \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

hay AD\(\perp\)BC

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

22 tháng 1

dm

AH
Akai Haruma
Giáo viên
14 tháng 1

Lời giải:

1. Xét tam giác $ABD$ và $ACD$ có:

$AB=AC$

$\widehat{BAD}=\widehat{CAD}$ (do $AD$ là tia phân giác $\widehat{BAC}$)

$AD$ chung

$\Rightarrow \triangle BAD=\triangle CAD$ (c.g.c)

$\Rightarrow \widehat{ADB}=\widehat{ADC}$ 

Mà $\widehat{ADB}+\widehat{ADC}=180^0$

$\Rightarrow \widehat{ADB}=\widehat{ADC}=180^0:2=90^0$

$\Rightarrow AD\perp BC$

2.

$AB=AC$

$BE=CF$

$\Rightarrow AB-BE=AC-CF$ hay $AE=AF$

Xét tam giác $AED$ và $AFD$ có:

$AD$ chung

$AE=AF$

$\widehat{EAD}=\widehat{FAD}$ 

$\Rightarrow \triangle AED=\triangle AFD$ (c.g.c)

$\Rightarrow \widehat{EDA}=\widehat{FDA}$ 

$\Rightarrow DA$ là tia phân giác $\widehat{EDF}$

1: Xét ΔADB và ΔADC có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

2: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

Xét ΔEAD và ΔFAD có

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔEAD=ΔFAD

=>\(\widehat{EDA}=\widehat{FDA}\)

=>DA là phân giác của góc EDF

a) tam giác ABC có:

AB=AC => tam giác ABC cân tại A

Lại có: AD là đường phân giác của tam giác TG ABC

=> AD cũng là đường cao của tam giác ABC

b) xét tam giác EAD và tam giác ADF ta có:

AD chung

góc EAD = FDA ( AD là đpg)

AE =AF ( AB -BE=AC-FC)

=> TG EAD =TG ADF(cdc)

=> góc EDA=góc ADC(2 góc tương ứng)

mà AD nằm giữa 2 góc

=>...

3 tháng 9 2021

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

Góc EAD=góc FAD

AD chung

Do đó: ΔAED = ΔAFD

Suy ra: Góc EAD = góc FDA

hay DA là tia phân giác của góc EDF

14 tháng 12 2021

giúp mình với mọi người ơi

 

14 tháng 12 2021

làm ơn ạ 

 

6 tháng 3 2022

help

 

6 tháng 3 2022

xong 

mình chết rồi

24 tháng 12 2022

loading...  

a) Xét ∆ABE và ∆MBE có:

BE chung

góc ABE = góc MBE (BE là phân giác của góc ABC)

AB = BM

⇒∆ABE = ∆MBE (c-g-c)

⇒góc BAE = góc BME (hai góc tương ứng)

⇒ME vuông góc BC

b) Do ∆ABE = ∆MBE (cmt)

⇒AE = ME (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆AEK và ∆MEC có:

AE = ME (cmt)

góc AEK = góc MEC (đối đỉnh)

⇒∆AEK = ∆MEC (cạnh góc vuông - góc nhọn kề)

⇒EK = EC (hai cạnh tương ứng)

AK = MC (hai cạnh tương ứng)

Lại có: BK = BA + AK

BC = BM + MC

⇒BK = BC

c) Gọi H là giao điểm của BE và CK

Xét ∆BHK và ∆BHC có:

BK = BC (cmt)

góc HBK = góc HBC (do BE là tia phân giác của góc ABC)

BH chung

⇒∆BHK = ∆BHC (c-g-c)

⇒góc BHK = góc BHC (hai góc tương ứng)

Mà góc BHK + góc BHC = 180⁰ (kề bù)

⇒góc BHK = góc BHC = 180⁰ : 2 = 90⁰

⇒BH vuông góc KC

Hay BE vuông góc KC

5 tháng 2 2022

-Ủa bài này câu c phải chứng minh trước câu b chứ?