K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

yêu cầu bạn ơi?

5 tháng 11 2019

\(G=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3G-G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)\(-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(2G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(3M-M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)\(-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\)

\(2M=3-\frac{1}{3^{99}}\Leftrightarrow M=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2G=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)

\(\Rightarrow G=\frac{3}{4}-\frac{1}{3^{99}.2^2}-\frac{100}{3^{100}.2}\)

25 tháng 6 2018

A = 1 + \(\frac{1}{2}\left(1+2\right)\)\(\frac{1}{3}\left(1+2+3\right)\)+ .... + \(\frac{1}{100}\left(1+2+3+...+100\right)\)

A = \(1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)

A = \(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

A = \(\frac{2+3+4+...+101}{2}\)

A = \(\frac{\left(101+2\right).100}{2}\div2\)

A  = \(5150\div2=2575\)

18 tháng 7 2015

giải ****           

18 tháng 6 2019

Câu hỏi của ❖︵Ňɠυүễη Çɦâυ Ƭυấη Ƙїệт♔ - Toán lớp 7 - Học toán với OnlineMath

18 tháng 6 2019

=100/3^2+2+3+4

12 tháng 4 2017

A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101

A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=

= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)

=[1-(1/2)^101]/(1-1/2) -100/2^101 =

=(2^101 -1)/2^100 - 100/2^101

=> A= (2^101 -1)/2^99 - 100/2^100

7 tháng 2 2016

minh biet lam ne nhung ban phai cho minh nhe

 

7 tháng 2 2016

ai giup minh lam bai nay voi 

thanks nhieu