Cho : \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh : \(\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}=\left(\frac{a-b}{c-d}\right)^{2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu \(a=c=0\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\frac{b^{2019}}{d^{2019}}\)
\(\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}=\frac{-b^{2019}}{-d^{2019}}=\frac{b^{2019}}{d^{2019}}\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)
- Nếu \(a;c\ne0\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{2a^{2019}}{2c^{2019}}=\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a-c}{b-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)
Này Nguyễn Việt Lâm, mk thấy cái trường hợp a;c\(\ne\)0 nó cứ làm sao sao ấy.Bn thử kiểm tra lại xem
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(bk\right)^{2019}+\left(dk\right)^{2019}}{b^{2019}+d^{2019}}=\frac{b^{2019}.k^{2019}+d^{2019}.k^{2019}}{b^{2019}+d^{2019}}=\frac{k^{2019}.\left(b^{2019}+d^{2019}\right)}{b^{2019}+d^{2019}}=k^{2019}\)(1)
\(\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{\left(bk+dk\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{[k.\left(b+d\right)]^{2019}}{\left(b+d\right)^{2019}}=\frac{k^{2019}.\left(b+d\right)^{2019}}{\left(b+d\right)^{2019}}=k^{2019}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}\)
Mình viết sai đề đó nha
\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)
=>a=-b hoặc c=b hoặc a=c
không mất tính tổng quát, giả sử a=-b, ta có:
\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)
tương tư với các trường hợp khác ta cũng có P=1
Vậy P=1
Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)
\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)
Khi đó :
\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow c\left(a+b+c\right)\left(a+b\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow\left(ac+bc+c^2\right)\left(a+b\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> a=-b hoặc b=-c hoặc c=-a
không mất tính tổng quát ,giả sử a=-b, ta có:
\(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{-b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\left(1\right)\)
\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\left(2\right)\)
Từ (1) và (2) => đpcm
Tương tự với 2 trường hợp còn lại ta cũng có đpcm
Bài giải
* Từ \(\frac{a}{b}=\frac{c}{d}\text{ }\Rightarrow\text{ }\frac{a}{c}=\frac{b}{d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\text{ ( * ) }\)
* Từ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{\left(a-b\right)^{2019}}{\left(c-d\right)^{2019}}\left(\text{**}\right)\)
* Từ \(\left(\text{*}\right),\left(\text{**}\right)\Rightarrow\text{ ĐPCM}\)