K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Ta thấy \(x,x+1\) luôn có 1 số chăn và 1 số lẻ

Do đó  \(x^{20},\left(x+1\right)^{11}\) cũng luôn có 1 số chẵn và 1 số lẻ 

\(\Rightarrow2016^y=x^{20}+\left(x+1\right)^{11}\) lẻ

Điều này xảy ra khi \(y=0\) , còn nếu \(y\ge1\) thì \(2016^y\) luôn chẵn ( mâu thuẫn )
Vậy y = 0 

\(\Rightarrow x^{20}+\left(x+1\right)^{11}=2016^o=1\)

Nếu \(x=0\) thì đễ thấy thỏa mãn

Nếu   \(x\ge1\) thì \(x^{20}+\left(x+1\right)^{11}>1\) ( vô lý )

Vậy \(\left(x,y\right)=\left(0,0\right)\)
 

  

3 tháng 11 2019

Vế trái là tổng 2 số chẵn lẻ nên luôn là số lẻ \(\Rightarrow\) vế phải lẻ

\(\Rightarrow y=0\)

\(\Rightarrow x^{20}+\left(x+1\right)^{11}=1\Rightarrow x=0\)

Vậy \(\left(x;y\right)=\left(0;0\right)\)