cmr : y = ax2 + (a-1)x + 6a luôn đi qua 2 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)
Giả sử điểm cố định mà (d) đi qua có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta luôn có:
\(y_0=mx_0+m+5\)
\(\Leftrightarrow m\left(x_0+1\right)-y_0+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\-y_0+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=5\end{matrix}\right.\)
Vậy (d) luôn đi qua điểm cố định có tọa độ \(\left(-1;5\right)\)
\(y=ax^2+\left(a-1\right)x-6a\)
\(\Leftrightarrow a\left(x^2+x-6\right)-\left(x+y\right)=0\)
Gọi \(M\left(x_0;y_0\right)\) là điểm cố định của đồ thị hàm số
\(\Leftrightarrow a\left(x_0^2+x_0-6\right)-\left(x_0+y_0\right)=0\) \(\forall a\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2+x_0-6=0\\x_0+y_0=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_0=2\\y_0=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x_0=-3\\y_0=3\end{matrix}\right.\end{matrix}\right.\)
Vậy đồ thị hàm số luôn đi qua 2 điểm cố định là \(\left(2;-2\right)\) và \(\left(-3;3\right)\)
Bạn ghi sai đề, với đề thế này thì đồ thị ko đi qua bất kì điểm cố định nào cả
\(y=ax^2+\left(a-1\right)x-6a\) thì mới có khả năng đi qua 2 điểm cố định