Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b+c=0\\c=5\\\dfrac{-b}{2a}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-5\\b=-6a\\c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a=-5\\b=-6a\\c=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)
b: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+2b+c=3\\\dfrac{-b}{2a}=3\\-\dfrac{b^2+4ac}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=3\\b=-6a\\\left(-6a\right)^2+4ac=-16a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-12a+c=3\\b=-6a\\36a^2+16a+4ac=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=8a+3\\b=-6a\\36a^2+16a+4a\left(8a+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{17}\\b=6\cdot\dfrac{7}{17}=\dfrac{42}{17}\\c=8\cdot\dfrac{-7}{17}+3=-\dfrac{5}{17}\end{matrix}\right.\)
Từ đề bài \(\Rightarrow a>0\) và:
\(\left\{{}\begin{matrix}\frac{4ac-b^2}{4a}=-5\\a+b+c=-1\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2=36a\\a+b=-5\\c=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{b^2}{36}\\\frac{b^2}{36}+b+5=0\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=4\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=25\\b=-30\\c=4\end{matrix}\right.\)
a/ Gọi điểm cố định đó là \(N\left(x_0;y_0\right)\) .
Vì (d) đi qua N nên : \(\left(m-2\right)x_0+\left(m-1\right)y_0-1=0\Leftrightarrow m\left(x_0+y_0\right)-\left(2x_0+y_0+1\right)=0\)
Để (d) luôn đi qua N với mọi m thì \(\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x_0=-1\\y_0=1\end{cases}\) . Vậy điểm cố định đó là N(-1;1)
b/ Gọi \(A\left(\frac{1}{m-2};0\right)\) và \(B\left(0;\frac{1}{m-1}\right)\) là hai điểm thuộc (d)
và A,B lần lượt nằm trên Ox và Oy
Khi đó \(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
hay \(\frac{1}{h^2}=\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(m-2\right)^2}\)
Tới đây bạn tìm GTNN của \(\frac{1}{h^2}\) rồi suy ra GTLN của \(h\) nhé :)
a) ta có : \(\left(P\right)y=ax^2+bx+c\) đi qua 3 điểm \(A\left(0;-1\right);\left(1;-1\right)c\left(-1;1\right)\)
nên ta có hệ phương trình 3 ẩn sau : \(\left\{{}\begin{matrix}0a+0b+b=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\)
giải phương trình ta được : \(\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) vậy \(a=1;b=c=-1\)
b) quan sát phương trình ta thấy hệ số : \(a=-1;b=3;c=2\)
vậy \(a=-1;b=3;c=2\)
Gọi \(M\left(x;y\right)\) là điểm cố định mà (C) đi qua
\(\Leftrightarrow x^2+y^2+\left(m+2\right)x-\left(m+4\right)y+m+1=0\) ;\(\forall m\)
\(\Leftrightarrow x^2+y^2+2x-4y+1+m\left(x-y+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\x-y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\y=x+1\end{matrix}\right.\)
\(\Rightarrow x^2+\left(x+1\right)^2+2x-4\left(x+1\right)+1=0\)
\(\Leftrightarrow2x^2-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=0\end{matrix}\right.\)
\(\Rightarrow\) (C) luôn đi qua 2 điểm cố định \(A\left(1;2\right);B\left(-1;0\right)\)
\(\Rightarrow\) Đường tròn luôn có dây cung cố định AB
\(\Rightarrow\) Để bán kính đường tròn là nhỏ nhất khi và chỉ khi AB là đường kính
\(\Leftrightarrow\) Tâm I là trung điểm AB \(\Rightarrow I\left(0;1\right)\)
\(\Rightarrow m=-2\)
\(y=ax^2+\left(a-1\right)x-6a\)
\(\Leftrightarrow a\left(x^2+x-6\right)-\left(x+y\right)=0\)
Gọi \(M\left(x_0;y_0\right)\) là điểm cố định của đồ thị hàm số
\(\Leftrightarrow a\left(x_0^2+x_0-6\right)-\left(x_0+y_0\right)=0\) \(\forall a\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2+x_0-6=0\\x_0+y_0=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_0=2\\y_0=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x_0=-3\\y_0=3\end{matrix}\right.\end{matrix}\right.\)
Vậy đồ thị hàm số luôn đi qua 2 điểm cố định là \(\left(2;-2\right)\) và \(\left(-3;3\right)\)
Bạn ghi sai đề, với đề thế này thì đồ thị ko đi qua bất kì điểm cố định nào cả
\(y=ax^2+\left(a-1\right)x-6a\) thì mới có khả năng đi qua 2 điểm cố định