Cho \(\frac{a}{c}\)= \(\frac{b}{d}\)
Chứng minh :a) \(\frac{a+2020b}{a-2020b}\) = \(\frac{e+2020d}{e-2020d}\)
b) \(\frac{2020\left(a+c\right)}{2020a}\)= \(\frac{b+d}{b}\)
c) 2a+3c(b+d)=(a+c)(2b+3d)
Giải giúp em nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{2020b}{2020d}=\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)
=> \(\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)
=> \(\frac{a+2020b}{a-2020b}=\frac{c+2020d}{c-2020d}\)
b) \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{a}{a+c}=\frac{b}{b+d}\)
=> \(\frac{2020a}{2020\left(a+c\right)}=\frac{b}{b+d}\)
=> \(\frac{2020\left(a+c\right)}{2020a}=\frac{b+d}{b}\)
c) \(2a+3c\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\)
Câu c sai đề.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{2019a^2}{2019c^2}=\frac{2020b^2}{2020d^2}=\)
\(=\frac{2019a^2+2020b^2}{2019c^2+2020d^2}=\frac{2019a^2-2020b^2}{2019c^2-2020d^2}\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\)
Bạn ơi tham khảo thử cách này nhé !
Từ \(\frac{a}{b}=\frac{c}{d}\)( bài cho )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó :
+) \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019\left(bk\right)^2+2020b^2}{2019\left(bk\right)^2-2020b^2}=\frac{b^2\left(2019k^2+2020\right)}{b^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
+) \(\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019\left(dk\right)^2+2020d^2}{2019\left(dk\right)^2-2020d^2}=\frac{d^2\left(2019k^2+2020\right)}{d^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019b^2k^2+2020b^2}{2019b^2k^2-2020b^2}\)
\(=\frac{2019k^2+2020}{2019k^2-2020}\)(1)
và\(\Rightarrow\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019d^2k^2+2020d^2}{2019d^2k^2-2020d^2}\)
\(=\frac{2019k^2+2020}{2019k^2-2020}\)(2)
Từ (1) và (2) suy ra \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}\)\(=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\left(đpcm\right)\)
\(\sqrt{2020a+\frac{\left(b-c\right)^2}{2}}\le\sqrt{2020a+\frac{\left(b+c\right)^2}{2}}=\sqrt{2020a+\frac{\left(1010-a\right)^2}{2}}\)
\(=\sqrt{\frac{1}{2}\left(a^2+2020a+1010^2\right)}=\frac{1}{\sqrt{2}}\left(a+1010\right)\)
=> \(VT\le\frac{1}{\sqrt{2}}\left(a+b+c+3.1010\right)=2020\sqrt{2}\)
Dấu "=" xảy ra khi a=1010;b=0;c=0 và các hoán vị
Áp dụng t/c dttsbn:
\(\dfrac{a+b+c-2020d}{d}=\dfrac{b+c+d-2020a}{a}=\dfrac{c+d+a-2020b}{b}=\dfrac{d+a+b-2020c}{c}=\dfrac{3\left(a+b+c+d\right)-2020\left(a+b+c+d\right)}{a+b+c+d}=-2017\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c-2020d=-2017d\\b+c+d-2020a=-2017a\\c+d+a-2020b=-2017b\\d+a+b-2020c=-2017c\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=3d\\b+c+d=3a\\c+d+a=3b\\d+a+b=3c\end{matrix}\right.\Rightarrow a=b=c=d\)
\(F=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\\ F=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=4\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2