K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

3.

x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}

ƯC(100;500) =100

suy ra x =100

BC(10;25) =50

suy ra x =50

tick nha

5 tháng 6 2016

nhân S với 3ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

 ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

=> S là số chính phương

5 tháng 6 2016

S = 3^0 + 3^2 + 3^4 + 3^6 + ... + 3^2002 

Ta thấy tổng S gồm ( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng ), mỗi số hạng đều chia 4 dư 1 =>  S chia 4 dư 1002 hay S chia 4 dư 2

Mà số chính phương chia 4 chỉ có thể dư 0 hoặc 1 nên S không là số chính phương

Vậy S không là số chính phương

13 tháng 5 2023

A không phải là số chính phương nhé!

 Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:

A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)

Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.

Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:

A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1

Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.

 
13 tháng 5 2023

chi vậy trời

6 tháng 9 2015

Tổng có 2004 số hạng, nhóm các số hạng từ trái sang phải, mỗi nhóm 4 số hạng được 501 nhóm. Trong mỗi nhóm chữ số tận cùng của tổng là 0 nên A có tận cùng là 0. Vậy A là số chính phương.

6 tháng 9 2015

top scorer sai rồi  

3 tháng 2 2020

\(A=3+3^2+3^3+...+3^{2016}\)

\(=3\left(1+3+3^2+...+3^{2015}\right)\)

giả sử A là SCP 

\(\Rightarrow1+3+3^2+...+3^{2015}\)phải chia hết cho 3

Mà \(1+3+3^2+...+3^{2015}\)chia 3 dư 1

\(\Rightarrow\)giả sử sai

\(\Rightarrow A\)ko là SCP

3 tháng 2 2020

Ta thấy: A chia hết cho 3 vì các số hạng đều chia hết cho 3.      (1)

              A ko chia hết cho 3^2  vì 3 ko chia hết cho 3^2 và các số hạng khác đều chia hết.            (2)

Từ (1) và (2) suy ra A ko phải là số chính phương.

Vậy A ko phải là số chính phương

             

14 tháng 11 2018

Ta tính được A=\(\frac{3^{2005}-3}{2}\)=\(\frac{3\cdot\left(3^{2004}-1\right)}{2}\)

Nhận thấy A chia hết cho 3. 

Một số chính phương chia hết cho 3 phải chia hết cho 9

mà \(3^{2004}-1\)không chia hết cho 3 nên 

\(3\cdot\left(3^{2004}-1\right)\)không chia hết cho 9 hay A không chia hết cho 9

Vậy A không phải là số chính phương

Chúc bạn học tốt!

25 tháng 2 2020

Có thể làm như sau

3chia hết cho 9

3chia hết cho 9

3chia hết cho 9

...

32004 chia hết cho 9

mà 3 không chia hết cho 9

nên A = 3+ 3^2+3^3+3^4+...+3^2004 không chia hết cho 9

vậy A không là số chính phương

30 tháng 3 2018

giả sử A là số chính phương

Ta có: \(A=3+3^2+3^3+...+3^{2004}\)

               \(=3.\left(1+3+3^2+....+3^{2003}\right)\)

=> A chia hết cho 3

=> A chia hết cho 32 (vì A là số chính phương)

=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)

=> A không phải là số chính phương

P/s: Không biết đúng không, làm đại

30 tháng 3 2018

Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)

         => A\(⋮\)3 (1)

ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)

        => A không chia hết cho 3^2 (2)

từ (1) , (2) => A không là số chính phương

27 tháng 7 2018

a) Số số hàng trong tổng A là:

     \(\frac{\left(2n+1-1\right)}{2}+1=n+1\)

\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Do n là số tự nhiên nên A là số chính phương.

b) Số số hạng trong tổng B là:

    \(\frac{2n-2}{2}+1=n\)

\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)

Vậy số B không thể là số chính phương.