K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Ta có: \(\frac{x+1}{y+1}=\frac{y}{z}=\frac{z}{x}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x+1}{y+1}=\frac{y}{z}=\frac{z}{x}=\frac{x+1+y+z}{y+1+z+x}=\frac{1}{1}=1.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{y}{z}=1\Rightarrow y=1.z=z\\\frac{z}{x}=1\Rightarrow z=1.x=x\end{matrix}\right.\)

\(\Rightarrow x=y=z\left(đpcm\right).\)

Vậy \(x=y=z.\)

Chúc bạn học tốt!

31 tháng 10 2019

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x+1}{y+1}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+1+y+z}{y+1+x+z}\)=1\(\Rightarrow\)

\(\frac{x+1}{y+1}\)=1\(\Leftrightarrow\)x+1=y+1\(\Leftrightarrow\)x=y+1-1\(\Leftrightarrow\)x=y (1)

\(\frac{y}{z}\)=1\(\Leftrightarrow\)y=z (2)

\(\frac{z}{x}\)=1\(\Leftrightarrow\)z=x (3)

Từ (1), (2) và (3)\(\Rightarrow\)x=y=z

27 tháng 11 2015

\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(3x=y+z+t\)

\(3y=x+z+t\)

\(3x+3y=x+y+2z+2t\)

\(x+y=z+t\)

Tương tự ta được

\(y+z=x+t\)

P=1+1+1+1=4

 

 

22 tháng 11 2017

bạ này làm sai rồi

7 tháng 2 2021

giúp mình với nhé!

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{x+z}=\frac{3+2+1}{x+y+y+z+x+z}=\frac{6}{2\left(x+y+z\right)}=\frac{3}{x+y+z}\)

\(\Rightarrow x+y=x+y+z\)            \(\Rightarrow z=0\)

\(\Rightarrow P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2\left(x+y\right)+2019\cdot0}{x+y-2020\cdot0}=\frac{2\left(x+y\right)}{x+y}=2\)

Vậy P = 2

27 tháng 12 2019

Thank you very much

29 tháng 11 2017

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)( 1 )

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)( 2 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) 

\(\frac{x+2y-z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{9a}{x+2y-z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)

\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)

Ta có:

\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{z+x}\Rightarrow\frac{x+y}{3}=\frac{y+z}{2}=\frac{z+x}{1}=\frac{x+y+y+z+z+x}{3+2+1}=\frac{2\left(x+y+z\right)}{6}=\frac{x+y+z}{3}\)

\(\frac{x+y+z}{3}=\frac{x+y}{3}\Rightarrow z=0\)

Thay vào P, ta có:

\(P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2x+2y}{x+y}=\frac{2\left(x+y\right)}{x+y}=2\)

Vậy P=2

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

2 tháng 9 2016

Chào em, em hãy xem lời giải dưới đây nhé!

Lời giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2

=abz−acy+bcx−abz+acy−bcx/a2+b2+c2   =0               (*)

Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z     (1)

Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x     (2)

Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b) 

Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2

Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y

Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2

Từ đó tìm đc x, y