K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 10 2019

Đặt \(2^x=t>0\Rightarrow t^2-mt+10-m=0\) (1)

Để pt đã cho có 2 nghiệm pb thì (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-4\left(10-m\right)>0\\S=m>0\\P=10-m>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -2-2\sqrt{11}\\m>-2+2\sqrt{11}\end{matrix}\right.\\0< m< 10\end{matrix}\right.\)

\(\Rightarrow m=\left\{5;6;7;8;9\right\}\) \(\Rightarrow\sum m=35\)

8 tháng 7 2019

Chọn B

11 tháng 9 2018

16 tháng 5 2018

Đáp án : A

7 tháng 9 2019

Đáp án đúng : B

14 tháng 7 2019

8 tháng 1 2017

14 tháng 5 2019

Chọn D

7 tháng 2 2018

Đáp án B

Phương trình (1) có hai nghiệm dương phân biệt khi và chỉ khi phương trình (2) có hai nghiệm phân biệt lớn hơn 1.

Bảng biến thiên của hàm số  y = t 2 - 10 t

Phương trình (2) có hai nghiệm phân biệt lớn hơn 1 khi và chỉ khi -25< m < -9

Vậy S = {-24;-23;...;-10} và n(S) =15

18 tháng 3 2017




6 tháng 1 2019