Phân tích đa thức thành nhân tử:
x^4 -2y^4 -x^2y^2 - 4x^2 - 7y^2 -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
\(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^2\right)^3-\left(y^2\right)^3+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2-1\right)\)
\(=\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\left(x^2-y^2-1\right)\)
a: =(x^2-x+1)(x^2+x+1)
b: =x^2-6xy+9y^2=(x-3y)^2
c: =5x(x^2-2xy+y^2)
=5x(x-y)^2
d: =(x-3)^2
e: =(2y-z)(4x+7y)
a)HĐT:(x^2+1-x)(x^2+1+x)
b)=x^2-2.x.3y+(3y)^2
c)=5x(x^2-2xy+y^2)
=5x(x-y)^2
d)x^2-2.3.x+3^2
=(x-3)^2
e)(2y-z)+7y(2y-z)
=(2y-z)(1+7y)