Bt : So sánh :
A, 2^27 và 3^18
B, 3^225 và 5^150
C, 99^20 và 9999^10
D, 2^90 và 5^36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(2^{225}=2^{3.75}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=3^{2.75}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\)nên \(2^{225}< 3^{150}\)
b, Ta có:
\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
a)
\(7^{30}=\left(7^3\right)^{10}=343^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
mà \(343^{10}>81^{10}\)
=>\(7^{30}>3^{40}\)
b) 202^303 và 303^202
\(202^{303}=\left(202^3\right)^{100}=8242408^{100}\)
\(302^{202}=\left(302^2\right)^{100}=91204^{100}\)
\(8242408^{100}>91204^{100}
\)
202^303 > 303^202
a, 2^24 > 3^16
b, 5^300>3 ^500
c,99^20 > 9999^10
d, 2^30 +3^44 +4^30 < 3x24^10
Ta có 2225 = (23)75 = 875
3150 = (32)75 = 975
Vậy 2225 < 3150
Ta có:
291 = (213)7 = 81927
535 = (25)7 = 31257
Vì 81927 > 31257
=> 291 > 535
Ta có:
9920 = 9910.9910 < 9910.10010 < 9910.10110 = 999910
=> 9920 < 999910
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801< 9999\)nên \(9801^{10}=9999^{10}\)
Vậy \(99^{20}< 9999^{10}\)
a, 2^27 = 2^3.9 = 8^9
3^18 = 3^2.9 = 9^9
vì 8<9 => 8^9 < 9^9 => 2^27 < 3^18